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Abstract

Although the three-dimensional field equation for linear heat conduction is simple, it is still challenging to obtain

solutions of boundary value problems for shells with general geometry. The formulation of such problems can be

simplified by using specialized equations which model heat conduction in rigid shells in terms of two temperature fields:

one for the average temperature and the other for the average temperature gradient through the shell’s thickness. The

resulting equations are simpler because the field quantities are independent of the coordinate through the shell’s

thickness. However, constitutive equations for the heat fluxes in the shell theory are complicated because they depend

on both the heat conduction coefficient of the material being considered and on the shell’s geometry. The objective of

this paper is to develop restrictions on the constitutive equations in the linear Cosserat theory of rigid heat conducting

shells which ensure that the Cosserat equations produce exact steady-state solutions for Fourier conduction with an

arbitrary constant temperature gradient for all shell geometries including variable thickness. Constitutive equations are

proposed which satisfy these restrictions and example problems of a plate and of circular cylindrical and spherical shells

are solved which examine the accuracy of the Cosserat theory. The results of these examples show that the Cosserat

theory is accurate for moderately thick shells and moderately strong variation of the temperature field through the

shell’s thickness. In particular, the Cosserat solution converges smoothly to the exact solution as the shell becomes thin.

In contrast, the two other theories considered are shown to predict incorrect slopes at the thin shell limit.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical interest in thermal effects in structures (e.g. Boley and Weiner, 1960; Hetnarski, 1986, 1987,

1989, 1996) has focused mainly on predicting deformations and stresses due to thermal loads and not on

predicting heat conduction in the structure. Naghdi (1972) developed general thermomechanical equations

for predicting the evolution of both the deformations and the thermal fields within the context of the theory
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of a Cosserat surface. This theory was reconsidered in Green and Naghdi (1979) from the new thermo-

dynamical perspective proposed in Green and Naghdi (1977, 1978). Lukasiewicz (1989) also developed a

theory for determining thermal stresses in shells and an alternative approach to coupled thermoelastic shell

equations which includes the effects of hyperbolic heat conduction can be found in Altay and Dokmeci
(2001).

Although the three-dimensional equations of linear heat conduction in rigid solids are relatively simple

and many solutions are known (Carslaw and Jaeger, 1956), it is still a challenge to obtain solutions for

general shell geometries. Consequently, it is useful to develop specialized equations for heat conduction in

rigid shells which introduce simplifications of the temperature field through the shell’s thickness. For

example, the Cosserat theory (e.g. Naghdi, 1972; Green and Naghdi, 1979) introduces two temperature

fields which characterize the average temperature and the average temperature gradient through the shell’s

thickness. In Rubin (1986) these Cosserat equations were specialized for the case of heat conduction in rigid
shells. The simplified theory of Lukasiewicz (1989) also introduces two temperature fields which are

determined by energy equations for the shell. More recently, Shvets and Flyachok (1999) have developed a

set of equations for multilayer anisotropic shells using a Bubnov–Galerkin approximation of the energy

equation. Specifically, they introduced four temperature fields associated with a polynomial approximation

up to cubic order in the thickness coordinate. In addition, to further simplify the equations they approx-

imated the local curvature as the curvature on a single reference surface in the shell.

Another application of heat conduction in rigid shell-like structures is related to interphases in com-

posite materials. In the works of Sanchez-Palencia (1970), and Pham Huy and Sanchez-Palencia (1974) the
interphase was approximated as a single interface surface and imperfect interface conditions were proposed

separately for weakly and highly conducting interphases. Recently, Hashin (2001) used a Taylor series

expansion to develop heat conduction equations for thin (but finite thickness) interphases. These equations

are shell-type equations which introduce two temperature fields and are valid for interphases with general

geometry. In contrast with the previous work which proposed different equations for weakly conducting

interphases from those for highly conducting interphases, Hashin’s equations are unified in the sense that

the same equations are valid for the entire range of conductivity of the interphase.

Within the context of the Cosserat theory for heat conduction in rigid shells, the dependence of the two
temperature fields on the coordinate through the shell’s thickness is eliminated. This simplifies the equa-

tions since the field quantities depend only on time and the two spatial coordinates which characterize

material points on the shell’s middle surface. However, this elimination procedure causes the constitutive

equations for resultant flux quantities to depend on the shell’s geometry even when the associated three-

dimensional fluxes (e.g. for Fourier heat conduction) are trivial. Consequently, even within the con-

text of linear theory, the development of specific functional forms for these resultant flux quantities is not

trivial.

For the purely mechanical theory of shells, it is well known that the constitutive equations for shells
depend on both the properties of the material used to manufacture the shell and on the specific geometry of

the shell structure. However, given a specific uniform homogeneous elastic material and a specific shell

geometry it is not known how to specify the strain energy function for the elastic shell structure. Naghdi

and Rubin (1995) made some progress in sorting out the individual contributions of material and geometry

properties of the shell by developing restrictions on the constitutive equations for shells which ensure that

the shell equations produce exact solutions for all homogeneous deformations of non-linear elastic shells

with general reference geometry. These restrictions are fundamental in nature because they are valid for

large deformations.
In this paper, attention is confined to Fourier heat conduction but the rigid shell can have general

geometry including variable thickness. It is well known that the equilibrium equation for steady-steady heat

conduction in the absence of external heat supply requires the divergence of the three-dimensional heat flux

vector to vanish. For linear Fourier heat conduction this equation is automatically satisfied for all constant
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temperature gradients. Moreover, since the Cosserat theory with two temperature fields can model a

general constant three-dimensional temperature gradient exactly, it should be possible to develop restric-

tions on the thermal constitutive equations for shells which ensure consistency with exact solutions for

arbitrary constant temperature gradients. The objective of this paper is to develop these restrictions.
In contrast with the purely mechanical restrictions (Naghdi and Rubin, 1995) which were valid for

general non-linear homogeneous deformations, these thermal restrictions are valid only for the linear

theory of heat conduction with small temperature variations from a uniform reference temperature. This is

because for the general non-linear theory of heat conduction the heat flux vector can depend on both the

temperature and the temperature gradient. Consequently, the linear spatial variation of the temperature

field associated with a constant temperature gradient can cause non-vanishing divergence of the heat flux.

However, for the linear theory of Fourier heat conduction these thermal restrictions still impose non-trivial

conditions on the constitutive equations since they are valid for general shell geometry. In this regard, it is
noted that the constitutive equations in Rubin (1986) do not satisfy these restrictions.

An outline of this paper is as follows: Section 2 briefly reviews equations for a rigid heat conductor which

are a special case of the three-dimensional thermodynamical formulation proposed by Green and Naghdi

(1977, 1978). Section 3 develops the equations for a heat conducting rigid Cosserat shell by the direct

approach. Section 4 develops the restrictions on the constitutive equations which ensure that the linear

Cosserat equations produce exact solutions for arbitrary constant temperature gradients in a shell with

general geometry. Section 5 summarizes the models proposed by Lukasiewicz (1989) and Hashin (2001).

Section 6 considers an example of transient heat conduction in a plate to establish the validity a modified
constitutive coefficient. Section 7 specializes the Cosserat equations for a general cylindrical shell, and

Section 8 considers example problems for a circular cylindrical shell. Section 9 specializes the Cosserat

equations for a spherical shell and Section 10 considers an example problem for a spherical shell. A

summary of the main results is presented in Section 11. Finally, Appendix A provides details of the three-

dimensional approach.

Throughout the text, the usual summation convention is used for repeated lower case indices with the

range of Latin indices being (i ¼ 1; 2; 3) and that of Greek indices being (a ¼ 1; 2).
2. Three-dimensional theory

The objective of this section is to briefly summarize aspects of the three-dimensional thermodynamic

formulation proposed by Green and Naghdi (1977, 1978). Specifically, attention is confined to a rigid heat

conductor and initially the absolute temperature field h�ðh� > 0Þ is not restricted to small variations from

the uniform constant reference temperature h0. Also, to ease comparison of the three-dimensional equa-

tions with corresponding equations in the Cosserat theory of shells discussed in the next section, similar
quantities appearing in both theories are denoted by the same symbol, but with a superposed (*) attached

to the symbol associated with the three-dimensional theory.

In this theory the temperature field is determined by solving a balance of entropy proposed in the form
q� _g� ¼ q�s� þ q�n� � div�p�; ð2:1Þ
where q� is the mass density, g� is the specific (per unit mass) entropy, s� is the specific external rate of

supply of entropy, n� is the specific internal rate of production of entropy, p� is the entropy flux per unit

area, and div� is the divergence operator with respect to the position x�ðhiÞ of a material point. In general

the quantities depend on three convected coordinates hi ði ¼ 1; 2; 3Þ and time t. Also, the balance of energy

is given by
q� _e� ¼ q�h�s� � div�ðh�p�Þ ¼ q�r� � div�ðq�Þ; ð2:2Þ
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where e� is the specific internal energy, and the rate of external supply of energy r� and the heat flux vector

q� are related to s� and p� by the expressions
r� ¼ h�s�; q� ¼ h�p�: ð2:3a;bÞ
Moreover, it can be shown that
div�ðh�p�Þ ¼ p� � g� þ h�div�p�; g� ¼ oh�=ox�; ð2:4Þ
where g� is the temperature gradient. Then, using (2.3), (2.4) and the definition
w� ¼ e� � h�g� ð2:5Þ
of the Helmholtz free energy w�, it follows that the energy equation (2.2) can be rewritten in the form
q�h�n� ¼ �p� � g� � q�ð _w� þ g� _h�Þ: ð2:6Þ

Now, for a rigid heat conductor the constitutive equations are assumed to take the forms
w� ¼ w�ðh�Þ; g� ¼ g�ðh�Þ; p� ¼ p�ðh�; g�Þ; n� ¼ n�ðh�; g�Þ: ð2:7Þ
In the thermodynamic procedures proposed by Green and Naghdi (1977, 1978) the balance of entropy (2.1)

is used to determine the temperature field and the reduced form (2.6) of the balance of energy is used to
obtain restrictions on constitutive equations. Specifically, (2.6) is assumed to be valid for all thermo-

mechanical processes, which yields the standard restrictions on these constitutive assumptions of the forms
g� ¼ � ow�

oh� ; q�h�n� ¼ �p� � g�: ð2:8a;bÞ
Also, one form of the second law of thermodynamics requires heat (or entropy) to flow from hot to cold

regions which is equivalent to requiring the rate of internal production of entropy to be non-negative
q�h�n� ¼ �p� � g� P 0: ð2:9Þ

For the discussion of shells in the next section it is necessary to use general curvilinear coordinates. Most

often, this leads to the notions of covariant differentiation. However, following the approach used in (Green

and Zerna, 1968; Rubin, 2000) the equations can be expressed in alternative forms which require knowledge

only of partial differentiation. To this end, let the base vectors g�
i , their reciprocal vectors g�i, the scalar g�1=2

and the metric g�ij be define by the equations
g�
i ¼ x�

;i; g�
i � g�j ¼ dj

i ; g�1=2 ¼ g�
1 � g�

2 � g�
3 > 0; g�ij ¼ g�i � g�j; ð2:10Þ
where a comma denotes partial differentiation with respect to hi. Then, the gradient and divergence

operators have the properties that
g� ¼ grad�h� ¼ h�
;ig

�i; g�1=2div�p� ¼ ðg�1=2p� � g�iÞ;i: ð2:11a;bÞ
Next, defining m� and p�i by
m� ¼ q�g�1=2; p�i ¼ g�1=2p� � g�i; ð2:12Þ

the balance of entropy, balance of energy and the second law of thermodynamics can be written in the
forms, respectively,
m� _g� ¼ m�s� þ m�n� � p�i;i ; m� _e� ¼ m�h�s� � ðh�p�iÞ;i; ð2:13a;bÞ

m�h�n� ¼ �p�ih�
;i P 0: ð2:13cÞ
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For the simplest case of a constant specific heat c and Fourier heat conduction
w� ¼ c h�
�

� h0 � h� ln
h�

h0

� ��
; g� ¼ c ln

h�

h0

� �
; e� ¼ cðh� � h0Þ; q� ¼ �kg�; p� ¼ � k

h� g�;

ð2:14Þ

where k is the constant heat conduction coefficient. Then, for small values of s� and for small temperature

variations, quadratic terms in ðh� � h0Þ are neglected and these constitutive equations and (2.3a) reduce to
w� ¼ � c
2h0

ðh� � h0Þ2; g� ¼ c
h0

ðh� � h0Þ; e� ¼ cðh� � h0Þ; q� ¼ �kg�;

p� ¼ � k
h0

g�; q�h�n� ¼ 0; r� ¼ h0s� ð2:15Þ
and the balance of entropy becomes
m� _g� ¼ m�s� � p�i;i : ð2:16Þ
It can easily be shown that apart from a constant factor of h0 this is the same equation as that due to the

balance of energy (2.2). Moreover, in the absence of external rate of entropy supply (s� ¼ 0) (2.16) reduces

to the standard equation for linear heat conduction
q�c _h� ¼ kr�2h�; r�2h� ¼ g��1=2½g�1=2g�ijh�
;i�;j; ð2:17Þ
where r�2 is the three-dimensional Laplacian operator.
3. A rigid heat conducting Cosserat shell

The balance laws of the theory of a Cosserat shell can be developed by integrating the three-dimensional

equations or they can be developed using the direct approach which postulates them directly. However, the

constitutive equations of the shell are always developed within the context of the direct approach. Here, it is

convenient to use the notation proposed in Rubin (2000) which differs from that in Naghdi (1972), Green

and Naghdi (1979) and Rubin (1986). Specifically, attention is confined to a shell which has variable normal

thickness Hðha), and a material point in the shell is the located by the position vector x� which admits the

representation
x� ¼ x�ðhiÞ ¼ xðhaÞ þ h3a3ðhaÞ; �HðhaÞ
2

6 h3
6

HðhaÞ
2

; ð3:1Þ
where x locates material points on the reference middle surface (h3 ¼ 0), a3 is the unit normal to that

surface, and the convected coordinates of the surface are denoted by ha (a ¼ 1; 2). The tangent vectors aa,

their reciprocal vectors aa, the metric aab and the scalar a1=2 associated with this middle surface are defined

by
aa ¼ x;a; aa � ab ¼ db
a ; aab ¼ aa � ab; a3 ¼

a1 � a2

ja1 � a2j
; a1=2 ¼ a1 � a2 � a3 > 0; aa ¼ aabab: ð3:2Þ
In addition, the following identity is recorded for later convenience
ða1=2aaÞ;a ¼ �a1=2½ðar � a3;rÞa3�: ð3:3Þ
Also, the temperature field is assumed to be represented in the form
h� ¼ h�ðhi; tÞ ¼ hðha; tÞ þ h3h3ðha; tÞ; ð3:4Þ
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where h > 0 is the average absolute temperature and h3 is the average temperature gradient through the

shell’s thickness. (Here, the common symbol h for temperature is retained, so powers of h or h3 will be

indicated using parentheses to avoid confusion with the convected coordinates hi.)

For a rigid heat conducting shell these temperature fields are determined by solving the balances of
entropy which take the forms
m _g ¼ mðsþ nÞ � pa
;a; m _g3 ¼ mðs3 þ n3Þ þ p3 � p3a;a ; ð3:5Þ
where m is the mass per unit area dh1 dh2, g and g3 are the specific entropies, s and s3 are the specific external
rates of supply of entropy, n and n3 are the specific internal rates of production of entropy, pa and p3a are

entropy fluxes and p3 is an intrinsic rate of supply of entropy. Also, the balance of energy is given by
m_e ¼ mðhsþ h3s3Þ � ðhpa þ h3p3aÞ;a; ð3:6Þ
where e is the specific internal energy. Appendix A presents a derivation of these equations using the

Bubnov–Galerkin approach based on weighted integrals of the three-dimensional equations.

Following the thermodynamic procedures for the three-dimensional theory, the specific Helmholtz free

energy w of the shell is defined by
w ¼ e � hg � h3g
3 ð3:7Þ
and the balances of entropy are used to obtain the reduced energy equation in the form
mðhn þ h3n
3Þ ¼ �pah;a � p3h3 � p3ah3;a � mð _w þ g _h þ g3 _h3Þ: ð3:8Þ
Now, for a rigid heat conducting shell the constitutive equations are assumed to take the forms
w ¼ wðh; h3;GÞ; g ¼ gðh; h3;GÞ; g3 ¼ g3ðh; h3;GÞ;
pi ¼ piðVÞ; p3a ¼ p3aðVÞ; n ¼ nðVÞ; n3 ¼ n3ðVÞ;
V ¼ fh; h3; h;a; h3;a;Gg;

ð3:9Þ
where G represents the shell’s geometry. Again, using procedures similar to those discussed in Section 2 for

the three-dimensional theory, the reduced balance of energy (3.8) is assumed to be valid for all thermo-

mechanical processes which yields restrictions on these constitutive assumptions of the forms
g ¼ � dw
oh

; g3 ¼ � dw
oh3

; mðhn þ h3n
3Þ ¼ �pah;a � p3h3 � p3ah3;a: ð3:10Þ
Also, one form of the second law of thermodynamics requires heat (or entropy) to flow from hot to cold

regions which is equivalent to requiring the rate of internal production of entropy to be non-negative
mðhn þ h3n
3Þ ¼ �pah;a � p3h3 � p3ah3;a P 0: ð3:11Þ
For small temperature variations from the constant uniform temperature h0 (with h3 ¼ 0), the consti-

tutive equation (2.14) in Rubin (1986) suggest that
w ¼ � c
2h0

ðh � h0Þ2 �
cH 2

2p2h0

ðh3Þ2; g ¼ c
h0

ðh � h0Þ; g3 ¼ cH 2

p2h0

h3;

pa ¼ � kH
h0

½a1=2aab�h;b; p3a ¼ � kH 3

12h0

½a1=2aab�h3;b;

e ¼ cðh � h0Þ; n ¼ 0; n3 ¼ 0:

ð3:12Þ
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These constitutive equations for fpa; p3ag and the constitutive equation (A.10c) for p3
p3 ¼ � kH
h0

a1=2h3; ð3:13Þ
for p3 are consistent with the Bubnov–Galerkin forms (A.10) for plates ða3;a ¼ 0Þ and can be proposed for

shells as well. However, in (Rubin, 1986) p3 (which is equivalent to mn1 there) was specified by the modified

form
p3 ¼ � kH
h0

a1=2 þ H 2

12
ða3;1 � a3;2 � a3Þ

� �
h3; ð3:14Þ
which is consistent with the Bubnov–Galerkin form for general shells. Also, for constant mass density q�

the mass term m in the balance laws is given by (A.5). Moreover, it is noted that for shells the explicit

dependence of the constitutive equations on the shell’s reference geometry was not specified in Green and

Naghdi (1979).

Furthermore, it can be shown that the expressions (3.12) for pa and p3a yield the results
pa
;a ¼ � kH

h0

a1=2r2
sh � k

h0

H;a

�
a1=2aab

�
h;b; p3a;a ¼ � kH 3

12h0

a1=2r2
sh3 �

kH 2

4h0

H;a

�
a1=2aab

�
h3;b;

r2
sh ¼ a�1=2ða1=2aabh;aÞ;b; ð3:15Þ
which express the surface divergences of these quantities in terms of the surface Laplacian r2
s of the

temperature fields h and h3, respectively.

Next, from Appendix A it is recalled that the assigned fields ms and ms3 can be separated additively into

two parts
ms ¼ mðss þ spÞ; ms3 ¼ mðs3s þ s3pÞ; ð3:16Þ
where mss and ms3s are due to the three-dimensional external rate of entropy supply s�, and the terms msp
and ms3p, due to entropy supply through the bottom and top surfaces of the shell, are given by
msp ¼ � 1

h0

½âq̂� �a�q�; ms3p ¼ � H
2h0

½âq̂þ �a�q�;

�q ¼ ��q� � �n�; q̂ ¼ q̂� � n̂�; �q� ¼ q� ha;

�
� H

2
; t
�
; q̂� ¼ q� ha;

H
2
; t

� � ð3:17Þ
for small temperature variations from h0. In these expressions �q is the heat flux into the shell through its

bottom surface and q̂ is the heat flux out of the shell through its top surface. Furthermore, the unit outward
normal vectors f�n�; n̂g to the bottom and top surfaces, respectively, and the scalars f�a; âg are given by
�a�n� ¼ � �g�1=2�g�3
�

þ H;r

2
�g�1=2�g�r

�
; ân̂� ¼ ĝ�1=2ĝ�3 � H;r

2
ĝ�1=2ĝ�r ð3:18Þ
in terms of the vectors defined in (A.7).

Thus, for small temperature variations the linear forms of the balances of entropy reduce to
m _g ¼ mss �
1

h0

½âq̂� �a�q� � pa
;a; m _g3 ¼ ms3s �

H
2h0

½âq̂þ �a�q� þ p3 � p3a;a ; ð3:19Þ
which are subject to initial and boundary conditions. Now, in the absence of external entropy supply

(ss ¼ s3s ¼ 0Þ and confining attention to steady-state these equations can be solved for �q and q̂ to obtain
�q ¼ h0

�a
1

2
pa
;a

�
þ 1

H
ðp3 � p3a;a Þ

�
; q̂ ¼ � h0

â
1

2
pa
;a

�
� 1

H
ðp3 � p3a;a Þ

�
: ð3:20Þ



7016 M.B. Rubin / International Journal of Solids and Structures 41 (2004) 7009–7033
Also, using the assumption (3.4) it follows that the temperature fields h and h3 are related to the temper-

atures �h and ĥ associated with the shell’s bottom and top surfaces, respectively, by the expressions
h ¼ 1

2
ð�h þ ĥÞ; h3 ¼

1

H
ðĥ � �hÞ: ð3:21Þ
4. Restrictions for constant temperature gradient

For constant temperature gradient g� it follows that the three-dimensional temperature field h� is given

by
h� ¼ hA þ g� � ðx� � xAÞ; ð4:1Þ
where hA is the temperature at the material point xA. Moreover, in the absence of external entropy supply

and confining attention to steady-state the non-linear balance law (2.1) reduces to
div�ðq�Þ ¼ 0; ð4:2Þ
where use has been made of the relationship (2.3b) and the constitutive equation (2.8b). However, in

general the non-linear constitutive equation for heat flux depends also on h�, which is a linear function of

x�, so that (4.2) is not necessarily satisfied for a constant temperature gradient.

In contrast, for small temperature variations from h0, p� and q� are linear functions of g� which are

independent of x� (since h� in p� is approximated by h0). This means that for steady-state and in the absence

of external entropy supply, the approximation of the balance law (2.1) (with n� ¼ 0 since it is second-order

in temperature) reduces to
div�p� ¼ 1

h0

div�q� ¼ 0; ð4:3Þ
which is satisfied in general for constant temperature gradient in shells made from uniform homogeneous

materials. Consequently, it should be possible to propose restrictions on the constitutive equations for the

linear theory of a rigid heat conducting shell which ensure that the resulting steady-state balance laws in the

absence of external entropy supply are consistent with the exact equations for arbitrary constant tem-

perature gradient g� in shells with general geometry. Specifically, for this case the balances of entropy (3.19)
reduce to
� 1

h0

½âq̂þ �a�q� � pa
;a ¼ 0; � H

2h0

½âq̂� �a�q� þ p3 � p3a;a ¼ 0: ð4:4:a;bÞ
Moreover, substituting (3.1) into (4.1) and using (3.4) yields the expressions
h ¼ hA þ g� � ðx � xAÞ; h3 ¼ g� � a3; h;a ¼ g� � aa; h3;a ¼ g� � a3;a ð4:5Þ
for a constant temperature gradient g�. Also, in view of the specifications (3.17) and (3.18) it follows that for

Fourier heat conduction (2.15), the quantities f�a�q; âq̂g are given by
�a�q ¼ �k �g�1=2�g�3
�

þ H;r

2
�g�1=2�g�r

�
� g�;

âq̂ ¼ �k ĝ�1=2ĝ�3
�

� H;r

2
ĝ�1=2ĝ�r

�
� g�

ð4:6Þ
in terms of the vectors defined in (A.7).
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For general shell geometry Eq. (4.4) are non-trivial even for constant g�. In particular, using the con-

stitutive equations (3.12) and (3.14) it was shown in Rubin (1986) that these equations were not satisfied for

a specific case of constant temperature gradient in a problem for a circular cylindrical shell with constant

thickness. The objective here is to modify these constitutive equations so that (4.4) is satisfied for arbitrary
g� and arbitrary shell geometry. Specifically, it will be shown that the constitutive equation (3.12) for pa and

p3a can be retained but the constitutive equation for p3 must be modified relative to (3.13) or (3.14).

To this end, Eq. (3.20) can be rearranged to obtain
1

h0

½âq̂� �a�q� þ pa
;a ¼ 0; p3 ¼ H

2h0

½âq̂þ �a�q� þ p3a;a : ð4:7Þ
Next, using (3.18), (4.6) and (A.7) these equations yield restrictions on the constitutive equations for

fpa; p3; p3ag of the forms
� k
h0

½Ha1=2ðar � a3;rÞa3 � H;ra1=2ar� � g� þ pa
;a ¼ 0; ð4:8aÞ
p3 ¼ � k
h0

H a1=2
��

þ H 2

4
ða3;1 � a3;2 � a3Þ

�
a3 �

H 2

4
H;1ða3;2 � a3Þ �

H 2

4
H;2ða3 � a3;1Þ

�
� g� þ p3a;a : ð4:8bÞ
Moreover, using (3.3), (4.5) and the constitutive equation (3.12) for pa and p3a it can be shown that
a1=2aabh;b ¼ a1=2aa � g�; ð4:9aÞ
pa
;a ¼

k
h0

½Ha1=2ðar � a3;rÞa3 � H;ra1=2ar� � g�; ð4:9bÞ
a1=2aabh3;b ¼ ½a1=2aaba3;b� � g�; ð4:9cÞ
p3a;a ¼ � k
h0

H 3

12
ða1=2arca3;rÞ;c

�
þ H 2

4
H;cða1=2arca3;rÞ

�
� g�: ð4:9dÞ
Thus, with the help of (4.9b) it follows that (4.8a) is satisfied for all shells and all values of g�. Consequently,

the constitutive equation for pa need not be modified. Moreover, assuming that the constitutive equation
for p3a also needs no modification, Eq. (4.8b) requires
p3 ¼ � kH
h0

a1=2
��

þ H 2

4
ða3;1 � a3;2 � a3Þ

�
a3 þ

H 2

12
ða1=2arca3;rÞ;c

þ H
4

H;cða1=2arca3;rÞ
	

� H;1ða3;2 � a3Þ � H;2ða3 � a3;1Þ

�

� g�: ð4:10Þ
In particular, it can be seen that neither of the constitutive equations (3.13) or (3.14) satisfy the restriction

(4.10) for general shell geometry.
To motivate a modified constitutive equation for p3 it is noted that, for the general linear theory, p3 is a

linear function of {h;a; h3; h3;a} which can be expressed in the form
p3 ¼ � kH
h0

½Bah;a þ B3h3 þ B3ah3;a�; ð4:11Þ
where fBa;B3;B3ag are functions of the shell’s geometry. It therefore, follows from (4.5) that for constant

temperature gradient p3 takes the form:
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p3 ¼ � kH
h0

½Baaa þ B3a3 þ B3aa3;a� � g�: ð4:12Þ
However, since a3;a are vectors tangent to the shells middle surface they can be expressed in terms of their

components in the aa directions. This emphasizes that the expressions for fBa;B3;B3ag cannot be deter-

mined uniquely. Moreover, in proposing a constitutive equation for p3 it is also necessary to recall that the

complete set of constitutive equations must satisfy the second law of thermodynamics (3.11). Therefore,

for simplicity (4.10) is solved by specifying
Ba ¼ H 2

12
ða1=2arca3;rÞ;c

�
þ H

4
H;ra1=2arca3;c

	
� H;1ða3;2 � a3Þ � H;2ða3 � a3;1Þ


�
� aa;

B3 ¼ a1=2
�

þ H 2

4
ða3;1 � a3;2 � a3Þ þ

H 2

12
ða1=2arca3;rÞ;c � a3

n o�
; B3a ¼ 0;

ð4:13Þ
which yield a non-trivial generalization of (3.13) and (3.14).

Next, it is necessary to check the validity of the second law of thermodynamics for the constitutive

equations (3.12) and (4.11). Specifically, using (3.11) it follows that
�pah;a � p3h3 � p3ah3;a ¼
kH
h0

½a1=2aab�h;ah;b þ
kH
h0

Bah;ah3 þ
kH
h0

B3ðh3Þ2 þ
kH 3

12h0

½a1=2aab�h3;ah3;b: ð4:14Þ
However, these terms can be rearranged to deduce that
� pah;a � p3h3 � p3ah3;a ¼
kH
h0

a1=4aah;a

�
þ 1

2
a�1=4Bh3

�
� a1=4abh;b

�
þ 1

2
a�1=4Bh3

�
þ kH

h0

Gðh3Þ2 þ
kH 3

12h0

½a1=2aab�h3;ah3;b; ð4:15Þ
where the vector B and the scalar G are defined by
B ¼ Baaa; G ¼ B3 � 1

4
a�1=2B � B

� �
: ð4:16Þ
It then follows that (4.15) will remain non-negative (i.e. heat flows from hot to cold regions) provided that

the function G is positive. This places limitations on the thickness H and on the variation of the thickness of

the shell relative to its local radii of curvature. In the remainder of this work it is assumed that this con-

dition is satisfied. Further in this regard, it is noted that the shell’s thickness is also limited by the condition

that the convected coordinates hi provide a one-to-one mapping to all material points, which requires g�1=2

in (A.4) to remain positive.
In summary, the constitutive equations for the Cosserat model are given by (3.12) and (4.11) with the

specifications (4.13), and the equations of heat conduction are given by (3.19). Moreover, for steady-state

problems in the absence of external entropy supplies these equations can be solved for the heat flues �q and

q̂ to obtain (3.20). Also, the temperature fields h and h3 are given by (3.21).
5. Summary of two other models

The objective of this section is to summarize two other models for heat conduction in rigid shells

proposed by Lukasiewicz (1989) and Hashin (2001). Lukasiewicz (1989) developed a general thermoelastic

model for deformable shells as well a simplified model for transient heat conduction in rigid shells. Here,
attention is confined to the steady-state form of the model for rigid shells with constant uniform normal

thickness. By way of background, it is first noted that for orthogonal coordinates
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a1 � a2 ¼ 0;
a1ffiffiffiffiffiffi
a11

p
� �

;1

¼ �
ffiffiffiffiffiffi
a11

p

R1

a3;
a2ffiffiffiffiffiffi
a22

p
� �

;2

¼ �
ffiffiffiffiffiffi
a22

p

R2

a3; a3;1 ¼
1

R1

a1; a3;2 ¼
1

R2

a2; ð5:1Þ
where the magnitudes of R1 and R2 are local radii of curvature. Now, the variables fh;H ; T1; T2; q�n ; q
þ
n g in

Lukasiewicz (1989) are related to the variables used here by the expressions
h ¼ H ; H ¼ � 1

2

1

R1

�
þ 1

R2

�
; T1 ¼ h � h0; T2 ¼

H
2

h3; q�n ¼ ��q; qþn ¼ q̂: ð5:2Þ
Then, the equations (6.27) [The expression r0 there should be h=k instead of k=h as stated; Lukasiewicz

(2003, personal communication)] in Lukasiewicz (1989) can be rewritten in the forms
�q ¼ � k
H

�
� 1

2

j1 þ j2

2

� �2
ðh � h0Þ þ

H 2

2
r2

sh þ Hh3 �
H 3

10
r2

sh3

�
;

q̂ ¼ � k
H

1

2

j1 þ j2

2

� �2
ðh

�
� h0Þ �

H 2

2
r2

sh þ Hh3 �
H 3

10
r2

sh3

�
;

ð5:3Þ
where the Laplacian r2
s associated with the shell’s middle surface is defined by (3.15) and j1 and j2 are

normalized measures of the thickness relative to the local radii of curvature
j1 ¼
H
R1

; j2 ¼
H
R2

: ð5:4Þ
Hashin (2001) developed a model for a thin interphase which unified the more classical models asso-

ciated with weakly conducting interfaces (Sanchez-Palencia, 1970) and highly conducting interfaces

(Pham Huy and Sanchez-Palencia, 1974). The equations in Hashin (2001) were developed using an

orthogonal curvilinear coordinate system. To compare this model with the Cosserat model it is noted that

the variables fa1; a2; a3; ki; t;/
1;/2; q1n; q

2
ng in Hashin (2001) can be related to the variables used here by the

expressions
a1 ¼ h1; a2 ¼ h2; a3 ¼ h3; ki ¼ k; t ¼ H ; /1 ¼ �h; /2 ¼ ĥ; q1n ¼ �q; q2n ¼ q̂: ð5:5Þ
Also, with the help of (5.1) the parameters fh1; h2g in Hashin (2001) are given by
h1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11 1þ h3

R1

� �2
s

; h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 1þ h3

R2

� �2
s

; ð5:6Þ
so that
1

h1h2

����
h3¼�H=2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
2

2� j1

� �
2

2� j2

� �
;

1

h1h2

oðh1h2Þ
oh3

����
h3¼�H=2

¼ 1

H
2j1

2� j1

�
þ 2j2

2� j2

�
;

ð5:7Þ
Next, using these results the steady-state forms of Eqs. (5) and (17) in Hashin (2001) can be rewritten as
�q ¼ �kh3;

q̂ ¼ �k 1

�
� 2j1

2� j1

� 2j2

2� j2

�
h3 þ kH

2

2� j1

� �
2

2� j2

� �
r2

s
�h;

ð5:8Þ
where the Laplacian associated with the shell’s middle surface is defined in (3.15) and h3 is specified by
(3.21). In particular, it is noted that these equations were developed using a Taylor series expansion about

the surface h3 ¼ �H=2 so they are biased towards that surface.
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6. Example of transient heat conduction in a plate

The coefficient for g3 in (3.12) is different from the associated coefficient determined by Green and

Naghdi (1979). Although this coefficient was used in Rubin (1986) it was determined in unpublished results
which compared the Cosserat solution with an exact solution in Carslaw and Jaeger (1956, p. 112). Here,

this value can be justified by considering a simpler problem of transient heat conduction in a plate of

constant thickness H . Specifically, consider the problem of an insulated plate which initially has the tem-

perature distribution specified by
h�ðh3; 0Þ ¼ h0 þ
b
2
sin

ph3

H

� �
; ð6:1Þ
where b controls the magnitude of the temperature field. Also, the boundary conditions require
q�
�
� H

2
; t
�

¼ �qðtÞe3 ¼ 0; q� H
2
; t

� �
¼ �qðtÞe3 ¼ 0: ð6:2Þ
It is easy to see that the exact solution of (2.17) for this problem is given by
h� ¼ h0 þ AðtÞ sin ph3

H

� �
; AðtÞ ¼ b

2
exp

�
� kp2t

q�cH 2

�
: ð6:3Þ
It therefore follows with the help of (3.21) that this exact solution is consistent with the results:
�hðha; tÞ ¼ h0 � AðtÞ; ĥðha; tÞ ¼ h0 þ AðtÞ; hðha; tÞ ¼ h0; h3ðha; tÞ ¼ 2AðtÞ
H

: ð6:4Þ
For the Cosserat model of a plate, the position vector x and the unit normal a3 are given in terms of the

fixed rectangular Cartesian base vectors ei by
x ¼ haea; aa ¼ ea; a3 ¼ e3: ð6:5Þ
Thus, the balance laws (3.19) for a plate can be rewritten in the forms
q�Hc _h ¼ h0mss � ðq̂� �qÞ þ kHr2
sh;

q�H
cH 2

p2
_h3 ¼ h0ms3s �

H
2
ðq̂þ �qÞ � kHh3 þ

kH 3

12
r2

sh3:
ð6:6Þ
Specifically, for the problem under consideration the external entropy supplies vanish and the temperature

fields are fh; h3g are functions of time only so these equations reduce to
_h ¼ 0; _h3 ¼ � kp2

q�cH 2
h3: ð6:7Þ
Moreover, the initial conditions are specified to be consistent with the exact solution (6.4) with
hð0Þ ¼ h0; h3ð0Þ ¼
b
H
; ð6:8Þ
so that the solution of (6.7) gives
hðtÞ ¼ h0; h3ðtÞ ¼
b
H

exp

�
� kp2t

q�cH 2

�
; ð6:9Þ
which is identical to the exact results (6.4).
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7. Equations for a general cylindrical shell with constant thickness

The objective of this section is to reduce the theory of Sections 3 and 4 to the setting of a general

cylindrical shell which is infinitely long in the axial direction but has constant normal thickness H . Spe-
cifically, the axial direction of the shell is taken to be the unit constant vector e3 with the axial coordinate z.
Moreover, the coordinate h3 is retained as the normal coordinate to the shell’s middle surface (h3 ¼ 0), and

the two other coordinates defining points on this middle surface are specified by
h1 ¼ s; h2 ¼ z; ð7:1Þ

where s is the arclength coordinate of the curve defined by the intersection of the middle surface with the

z ¼ 0ðe1 � e2Þ plane. Thus, material points on the shell’s middle surface are located by x and the kinematic

definitions (3.2) yield
x ¼ xðs; zÞ; a1 ¼
ox

os
; a2 ¼

ox

oz
¼ e3; a3 ¼ a1 � a2; a1=2 ¼ 1; aa ¼ aa; ð7:2Þ
where ai are a set of right-handed orthonormal vectors. It then follows that
oa1

os
¼ � 1

R
a3;

oa1

oz
¼ 0;

oa3

os
¼ 1

R
a1;

oa3

oz
¼ 0; R ¼ RðsÞ; ð7:3Þ
where R is positive for convex curves (relative to the origin) and negative for concave curves, and its

magnitude is equal to the variable local radius of curvature of the shell’s middle surface. Also, the tem-

perature fields are given by
h ¼ hðs; z; tÞ; h3 ¼ h3ðs; z; tÞ: ð7:4Þ

Moreover, for this geometry it can be shown using (3.12), (3.18), (4.11) and (4.13) that
p1 ¼ � kH
h0

� �
oh
os

; p2 ¼ � kH
h0

� �
oh
oz

; p31 ¼ � kH 3

12h0

� �
oh3

os
; p32 ¼ � kH 3

12h0

� �
oh3

oz
;

p3 ¼ � kH
h0

� �
1

�
� j2

12

�
h3 þ

kH
h0

� �
j2

12

oR
os

� �
oh
os

;

�a ¼ 2� j
2

; â ¼ 2þ j
2

;

ð7:5Þ
where j is the ratio of the thickness to the local radius of curvature
j ¼ H
R
: ð7:6Þ
Thus, for cylindrical geometry the steady-state equation (3.20) reduce to
�q ¼ � k
H

2

2� j

� �
H 2

2

o2h
os2

��
þ o2h

oz2

�
þ 1

��
� j2

12

�
Hh3 �

j2H
12

oR
os

oh
os

�
� H 3

12

o2h3

os2

�
þ o2h3

oz2

��
;

q̂ ¼ � k
H

2

2þ j

� ��
� H 2

2

o2h
os2

�
þ o2h

oz2

�
þ 1

��
� j2

12

�
Hh3 �

j2H
12

oR
os

oh
os

�
� H 3

12

o2h3

os2

�
þ o2h3

oz2

��
:

ð7:7Þ

Also, the function G in (4.16) is given by
G ¼ 1� j2

12
� j4

576

dR
ds

� �2

; ð7:8Þ
which must remain positive.



7022 M.B. Rubin / International Journal of Solids and Structures 41 (2004) 7009–7033
Similarly, for this geometry j1 ¼ j and j2 ¼ 0 so that Lukasiewicz’s (1989) equations (5.3) become
�q ¼ � k
H

�
� j2

8
ðh � h0Þ þ

H 2

2

o2h
os2

�
þ o2h

oz2

�
þ Hh3 �

H 3

10

o2h3

os2

�
þ o2h3

oz2

��
;

q̂ ¼ � k
H

j2

8
ðh

�
� h0Þ �

H 2

2

o2h
os2

�
þ o2h

oz2

�
þ Hh3 �

H 3

10

o2h3

os2

�
þ o2h3

oz2

�� ð7:9Þ
and Hashin’s (2001) equations (5.8) become
�q ¼ � k
H
½Hh3�; q̂ ¼ � k

H
2

2� j

� �
2� 3j

2

� �
Hh3

"
� H 2 o2�h

os2

 
þ o2�h

oz2

!#
: ð7:10Þ
8. Examples of a circular cylindrical shell

Consider the problem of a circular cylindrical shell which has inner radius a and outer radius b. Then,
the constant mean radius R and uniform thickness H satisfy the equations
R ¼ aþ b
2

; H ¼ b� a; j ¼ H
R
; a ¼ R

2� j
2

� �
; b ¼ R

2þ j
2

� �
: ð8:1Þ
Now, for cylindrical polar coordinates the three-dimensional position vector x� takes the form
x� ¼ r erð/Þ þ ze3; ð8:2Þ
where the unit base vectors er and e/ are given by
erð/Þ ¼ cos/e1 þ sin/e2; e/ð/Þ ¼ � sin/e1 þ cos/e2: ð8:3Þ
Also, the polar angle is denoted by / in order to avoid confusion with the temperature field h.
In this section attention will be confined to two-dimensional steady-state problems for which the tem-

perature fields are independent of z and t. For this class of problems the exact temperature field h� satisfies

(2.17) which reduces to
o2h�

or2
þ 1

r
oh�

or
þ 1

r2
o2h�

o/2
¼ 0: ð8:4Þ
Moreover, taking
h1 ¼ /; h2 ¼ z; s ¼ R/: ð8:5Þ
The Cosserat equations (7.7) require
�q ¼ � k
H

2

2� j

� �
j2

2

o2h

o/2

�
þ 1

�
� j2

12

�
Hh3 �

j2H
12

o2h3

o/2

�
;

q̂ ¼ � k
H

2

2þ j

� ��
� j2

2

o2h

o/2
þ 1

�
� j2

12

�
Hh3 �

j2H
12

o2h3

o/2

�
;

ð8:6Þ
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Lukasiewicz’s (1989) equations (7.9) require
�q ¼ � k
H

�
� j2

8
ðh � h0Þ þ

j2

2

o2h

o/2
þ Hh3 �

j2H
10

o2h3

o/2

�
;

q̂ ¼ � k
H

j2

8
ðh

�
� h0Þ �

j2

2

o2h

o/2
þ Hh3 �

j2H
10

o2h3

o/2

� ð8:7Þ
and Hashin’s (2001) equations (7.10) require
�q ¼ � k
H

Hh3½ �; q̂ ¼ � k
H

2

2� j

� �
2� 3j

2

� �
Hh3

"
� j2 o

2�h

o/2

#
: ð8:8Þ
Also, the function G in (7.8) remains positive since dR=ds ¼ 0 and j6 2.

In Section 3 the Cosserat equations were modified to ensure that they reproduce the exact solution for a

constant temperature gradient in any direction. Therefore, to explore the differences between these three

models it is possible to consider the simple steady-state solution of constant temperature gradient b in the
e1 direction for which the temperature fields are given by
h� ¼ h0 þ br cos/; h ¼ h0 þ bR cos/; h3 ¼ b cos/; �h ¼ h0 þ bR
2� j
2

� �
cos/;

ĥ ¼ h0 þ bR
2þ j
2

� �
cos/ ð8:9Þ
and the exact solutions for the heat fluxes become
�q ¼ �Q cos/; q̂ ¼ Q̂ cos/; �Q ¼ �kb; Q̂ ¼ �kb: ð8:10a;b;c;dÞ

Next, substituting (8.9) into the Cosserat equation (8.6) yields the exact solution (8.10) for �q and q̂. In
contrast, Lukasiewicz’s (1989) equations (8.7) predict the forms (8.10a,b) with
�Q ¼ � 1

�
� 5j

8
þ j2

10

�
kb; Q̂ ¼ � 1

�
þ 5j

8
þ j2

10

�
kb ð8:11a;bÞ
and Hashin’s (2001) equations (8.8) predict the forms (8.10a,b) with
�Q ¼ �kb; Q̂ ¼ � 2� 5j þ j2

2� j

� �
kb; ð8:12a;bÞ
neither of which predict the exact solution (8.10). Moreover, a series expansion of these solutions indicates

the solutions (8.11a,b) and (8.12b) are only accurate to zero-order in j. This means that the solutions

(8.11a,b) and (8.12b) do not predict the correct slope in the thin shell limit (j ! 0).

The equations for rigid heat conducting shells should produce reasonably accurate predictions when the
shell is thin. However, it is well known that the notion of ‘‘thin’’ is not purely geometrical and that the shell

theory is accurate when the variation in quantities through the shell’s thickness is not too severe. Therefore,

it is of interest to explore the limits of shell theory by considering a class of problems which allows for

control of the variation of the temperature field through the shell’s thickness. To this end, consider the class

of exact solutions of (8.4) for which
h� ¼ h0 þ H�ðrÞ cosðn/Þ; H�ðrÞ ¼ A
r
R

� �n�
þ B

R
r

� �n�
; q� ¼ Q�ðrÞ cosðn/Þ;

Q�ðrÞ ¼ � k
H

jn A
r
R

� �n�1

"
� B

R
r

� �nþ1
#
; ð8:13Þ
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where the constants A and B are determined by boundary conditions, q� represents the radial component of

the heat flux vector and the integer n controls the variation of the temperature field through the shell’s

thickness. For the problem under consideration the boundary conditions are specified
H�ðaÞ ¼ 0; H�ðbÞ ¼ b; ð8:14Þ
where b controls the magnitude of the temperature at the outer surface. It then follows that the exact

solution of this problem is obtained by solving the equations
A
2� j
2

� �n

þ B
2

2� j

� �n

¼ 0; A
2þ j
2

� �n

þ B
2

2þ j

� �n

¼ b ð8:15Þ
to obtain
A ¼
2

2�j

� �n
2þj
2�j

� �n � 2�j
2þj

� �n
264

375b; B ¼ �
2�j
2

� �n
2þj
2�j

� �n � 2�j
2þj

� �n
264

375b: ð8:16Þ
Consequently, the normal components �q and q̂ of the heat fluxes at the inner and outer boundaries,

respectively, take the forms
�q ¼ Q cosðn/Þ; q̂ ¼ bQ cosðn/Þ; ð8:17Þ

where the constants Q and bQ are given by
Q ¼ � k
H

jn
4

2�j

2þj
2�j

� �n � 2�j
2þj

� �n
264

375b;

bQ ¼ � k
H

jn
2

2þ j

� � 2þj
2�j

� �n þ 2�j
2þj

� �n
2þj
2�j

� �n � 2�j
2þj

� �n
264

375b:

ð8:18Þ
For the Cosserat shell model the temperature fields in (3.21) associated with (8.13) and (8.14) are

specified by
h ¼ h0 þ
b
2
cosðn/Þ; h3 ¼

b
H

cosðn/Þ; �h ¼ h0; ĥ ¼ h0 þ b cosðn/Þ ð8:19Þ
so that Eqs. (8.6) yield heat fluxes in the forms (8.17) with
Q ¼ � k
H

2

2� j

� �
1

�
� j2

12
ð1þ 2n2Þ

�
b; bQ ¼ � k

H
2

2þ j

� �
1

�
� j2

12
ð1� 4n2Þ

�
b: ð8:20a;bÞ
Similarly, Lukasiewicz’s (1989) equations (8.7) yield heat fluxes in the forms (8.17) with
Q ¼ � k
H

1

�
� j2 1

16

�
þ 3

20
n2
��

b; bQ ¼ � k
H

1

�
þ j2 1

16

�
þ 7

20
n2
��

b ð8:21a;bÞ
and Hashin’s (2001) equations (8.8) yield heat fluxes in the forms (8.17) with
Q ¼ � k
H

b; bQ ¼ � k
H

2� 3j
2� j

� �
b: ð8:22a;bÞ
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Fig. 1. Response of a circular cylindrical shell. Comparison of the exact (E), Cosserat (C), Lukasiewicz (L) and Hashin (H) solutions.
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It can be shown that the Cosserat solution (8.20) predicts the exact solution (8.18) for all values of j (all
thicknesses of the shell) when n ¼ 1. However, for other values of n the Cosserat solution is only

approximate. A series expansion of these solutions indicates that the Cosserat solutions (8.20a,b) are both

accurate to third-order in j, whereas the other solutions (8.21a,b) and (8.22a,b) are only accurate to zero-

order in j. This means that the solutions (8.21) and (8.22) do not predict the correct slope in the thin shell

limit (j ! 0). Fig. 1 compares the predictions of these solutions for a range of shell thicknesses j and for

two values of n. For all cases the Cosserat solution converges smoothly to the exact solution as the shell

becomes thin. Moreover, it is seen that the Cosserat theory predicts accurate results for moderately thick

shells and moderately strong variation of the temperature field through the shell’s thickness.
9. Equations for a spherical shell with constant thickness

For a spherical shell of mean radius R and constant thickness H , the normalized thickness j is defined by
j ¼ H
R

ð9:1Þ
and a material point on the spherical middle surface of the shell is located by the position vector x
x ¼ Rerðc;/Þ; ð9:2Þ
where the orthonormal base vectors fer; ec; e/g associated with the spherical polar coordinates fr; c;/g are

defined in terms of the fixed base vectors ei of a rectangular Cartesian coordinate system by the equations
er ¼ erðc;/Þ ¼ sin cðcos/e1 þ sin/e2Þ þ cos ce3;

ec ¼ ecðc;/Þ ¼ cos cðcos/e1 þ sin/e2Þ � sin ce3;

e/ ¼ e/ð/Þ ¼ � sin/e1 þ cos/e2:

ð9:3Þ
Again, the symbol / is used instead of the usual symbol h for the circumferential coordinate to avoid
confusion with the temperature fields introduced earlier. Also, it can be shown that
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oer

oc
¼ ec;

oer

o/
¼ sin ce/;

oec

oc
¼ �er;

oec

o/
¼ cos ce/;

oe/

oc
¼ 0;

oe/

o/
¼ � sin cer � cos cec: ð9:4Þ
Now, using the definitions in Section 3, the geometry of the spherical shell is given by
h1 ¼ c; h2 ¼ /; a1 ¼ Rec; a2 ¼ R sin ce/; a3 ¼ er; a1=2 ¼ R2 sin c;

a1 ¼ 1

R
ec; a2 ¼ 1

R sin c
e/; a3;1 ¼ ec; a3;2 ¼ sin ce/;

ar � a3;r ¼ 2

R
; a3;1 � a3;2 � a3 ¼ sin c; ða1=2arca3;rÞ;c ¼ �2 sin cer;

�a ¼ R2 2� j
2

� �2

sin c; â ¼ R2 2þ j
2

� �2

sin c:

ð9:5Þ
Also, the function G in (4.16) is given by
G ¼ R2 sin c 1

�
þ j2

12

�
; ð9:6Þ
which remains positive except for the singular points when sin c ¼ 0. Consequently, the second law of

thermodynamics is satisfied by these constitutive equations for all spherical shells. Moreover, the consti-

tutive equations (3.12) for pa and p3a and (4.11) for p3 yield
pa
;a ¼ � kH

h0

sin c
o2h
oc2

�
þ cot c

oh
oc

þ 1

sin2 c

o2h

o/2

�
;

p3a;a ¼ � kH 3

12h0

sin c
o2h3

oc2

�
þ cot c

oh3

oc
þ 1

sin2 c

o2h3

o/2

�
;

p3 ¼ � kH
h0

R2 1

��
þ j2

12

�
sin c

�
h3;

ð9:7Þ
so that the heat fluxes �q and q̂ in (3.20) can be expressed in the forms
�q ¼ � k
H

2

2� j

� �2

1

��
þ j2

12

�
Hh3 þ

j2

2

o2h
oc2

�
þ cot c

oh
oc

þ 1

sin2 c

o2h

o/2

�

� j2H
12

o2h3

oc2

�
þ cot c

oh3

oc
þ 1

sin2 c

o2h3

o/2

��
;

q̂ ¼ � k
H

2

2þ j

� �2

1

��
þ j2

12

�
Hh3 �

j2

2

o2h
oc2

�
þ cot c

oh
oc

þ 1

sin2 c

o2h

o/2

�

� j2H
12

o2h3

oc2

�
þ cot c

oh3

oc
þ 1

sin2 c

o2h3

o/2

��
:

ð9:8Þ
In these equations the temperature fields fh; h3g are defined by (3.21) in terms of the temperatures f�h; ĥg
at the bottom and top surfaces of the shell, respectively.



M.B. Rubin / International Journal of Solids and Structures 41 (2004) 7009–7033 7027
For this spherical shell j1 ¼ j2 ¼ j, Lukasiewicz’s (1989) equations (5.3) become
�q ¼ � k
H

�
� j2

2
ðh � h0Þ þ

j2

2

o2h
oc2

�
þ cot c

oh
oc

þ 1

sin2 c

o2h

o/2

�
þ Hh3

� j2H
10

o2h3

oc2

�
þ cot c

oh3

oc
þ 1

sin2 c

o2h3

o/2

��
;

q̂ ¼ � k
H

j2

2
ðh

�
� h0Þ �

j2

2

o2h
oc2

�
þ cot c

oh
oc

þ 1

sin2 c

o2h

o/2

�
þ Hh3

� j2H
10

o2h3

oc2

�
þ cot c

oh3

oc
þ 1

sin2 c

o2h3

o/2

��
ð9:9Þ
and Hashin’s (2001) equations (5.8) become
�q ¼ � k
H
ðĥ � �hÞ;

q̂ ¼ � k
H

2� 5j
2� j

� �
ðĥ

"
� �hÞ � 2j

2� j

� �2
o2�h
oc2

(
þ cot c

o�h
oc

þ 1

sin2 c

o2�h

o/2

)#
;

ð9:10Þ
where the temperature fields are given by (3.21).

In Section 3 the Cosserat equations were modified to ensure that they reproduce the exact solution for

a constant heat flux in any direction for arbitrary shell geometry. Therefore, to explore the differences

between these three models it is possible to consider the simple steady-state solution of constant heat flux b
for which the exact temperature field h� is specified by
h� ¼ h0 þ bx3 ¼ h0 þ br cos c: ð9:11Þ
It then follows from (3.21) and (9.11) that
�h ¼ h0 þ
Hb
j

2� j
2

� �
cos c; ĥ ¼ h0 þ

Hb
j

2þ j
2

� �
cos c;

h ¼ h0 þ
Hb
j

cos c; Hh3 ¼ Hb cos c:

ð9:12Þ
Next, substituting these expressions into the Cosserat equations (9.8) yield
�q ¼ q̂ ¼ �kb cos c; ð9:13Þ
which is consistent with the exact solution. In contrast, Lukasiewicz’s (1989) equations (9.9) yield
�q ¼ � 1

�
� 3j

2
þ j2

5

�
kb cos c; q̂ ¼ � 1

�
þ 3j

2
þ j2

5

�
kb cos c ð9:14:a;bÞ
and Hashin’s (2001) equations (9.10) yield
�q ¼ �kb cos c; q̂ ¼ �k
2� 3j
2� j

� �
b cos c; ð9:15a;bÞ
neither of which predict the exact solution (9.13). Moreover, a series expansion of these solutions indicates
that the solutions (9.14a,b) or (9.15b) are only accurate to zero-order in j. This means that the solutions

(9.14) and (9.15) do not predict the correct slope in the thin shell limit (j ! 0).
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10. Example of a spherical shell

As a specific example consider the problem of a spherical shell which has inner radius a and outer radius

b. Then, the mean radius R and uniform thickness H satisfy the equations
R ¼ aþ b
2

; H ¼ b� a; j ¼ H
R
; a ¼ R

2� j
2

� �
; b ¼ R

2þ j
2

� �
: ð10:1Þ
Now, for steady-state the exact temperature field h� satisfies the equation
o2h�

or2
þ 2

r
oh�

or
þ 1

r2
o2h�

oc2
þ cot c

r2
oh�

oc
þ 1

r2 sin2 c

o2h�

o/2
¼ 0: ð10:2Þ
Therefore, following Carslaw and Jaeger (1959, p. 248) it can be shown using the change of variables
l ¼ cos c; ð10:3Þ
that
o2h�

oc2
þ cot c

oh�

oc
¼ o

ol
ð1
�

� l2Þ oh
�

ol

�
: ð10:4Þ
Moreover, recalling that the Legendre functions PnðlÞ satisfy the differential equation
d

dl
ð1
�

� l2Þ dPn
dl

�
¼ �nðnþ 1ÞPn ð10:5Þ
for positive integer values of n it follows that a class of exact solutions of (10.2) can be written in the

forms
h� ¼ h0 þ H�ðrÞPnðlÞ; H�ðrÞ ¼ A
r
R

� �m1

�
þ B

R
r

� �m2
�
;

q� ¼ Q�ðrÞPnðlÞ; Q�ðrÞ ¼ � k
H

j m1A
r
R

� �m1�1

"
� m2B

R
r

� �m2þ1
#
;

m1 ¼
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nðnþ 1Þ

p
2

; m2 ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4nðnþ 1Þ

p
2

;

ð10:6Þ
where the constants A and B are determined by boundary conditions. Also, q� represents the radial

component of the heat flux vector. For the problem under consideration the boundary conditions are

specified
H�ðaÞ ¼ 0; H�ðbÞ ¼ b; ð10:7Þ
where b controls the magnitude of the temperature at the outer surface. It then follows that the exact

solution of this problem is obtained by solving the equations
A
2� j
2

� �m1

þ B
2

2� j

� �m2

¼ 0; A
2þ j
2

� �m1

þ B
2

2þ j

� �m2

¼ b ð10:8Þ
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to obtain
A ¼
2

2�j

� �m1

2þj
2�j

� �m1 � 2�j
2þj

� �m2

264
375b; B ¼ �

2�j
2

� �m2

2þj
2�j

� �m1 � 2�j
2þj

� �m2

264
375b: ð10:9Þ
Consequently, the normal components �q and q̂ of the heat fluxes at the inner and outer boundaries,

respectively, take the forms
�q ¼ QPnðlÞ; q̂ ¼ bQPnðlÞ; ð10:10Þ
where the constants Q and bQ are given by
Q ¼ � k
H

j m1A
2� j
2

� �m1�1
"

� m2B
2

2� j

� �m2þ1
#
;

bQ ¼ � k
H

j m1A
2þ j
2

� �m1�1
"

� m2B
2

2þ j

� �m2þ1
#
:

ð10:11Þ
For the Cosserat shell model the temperature fields in (3.21) are specified by
h ¼ h0 þ
b
2
PnðlÞ; h3 ¼

b
H
PnðlÞ; �h ¼ h0; ĥ ¼ h0 þ bPnðlÞ; ð10:12Þ
so that Eqs. (9.8) yield heat fluxes in the forms (10.10) with
Q ¼ � k
H

2

2� j

� �2

1

�
þ j2

12
f1� 2nðnþ 1Þg

�
b; ð10:13aÞ

bQ ¼ � k
H

2

2þ j

� �2

1

�
þ j2

12
f1þ 4nðnþ 1Þg

�
b: ð10:13bÞ
Similarly, Lukasiewicz’s (1989) equations (9.9) yield heat fluxes in the forms (10.10) with
Q ¼ � k
H

1

�
� j2

20
f5þ 3nðnþ 1Þg

�
b; ð10:14aÞ

bQ ¼ � k
H

1

�
þ j2

20
f5þ 7nðnþ 1Þg

�
b; ð10:14bÞ
and Hashin’s (2001) equations (9.10) yield heat fluxes in the forms (10.10) withs
Q ¼ � k
H

b; bQ ¼ � k
H

2� 5j
2� j

� �
b; ð10:15a;bÞ
A series expansion of these solutions indicates that the Cosserat solutions (10.13a,b) are both accurate to

first-order in j for any value of n and they are accurate to second-order in j for large values of n. In
contrast, the other solutions (10.14a,b) and (10.15a,b) are only accurate to zero-order in j. This means that

the solutions (10.14) and (10.15) do not predict the correct slope in the thin shell limit (j ! 0). Fig. 2

compares the predictions of these solutions for a range of shell thicknesses j and for two values of n. For all
cases the Cosserat solution converges smoothly to the exact solution as the shell becomes thin. Again, it is

seen that the Cosserat theory predicts accurate results for moderately thick shells and moderately strong
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Fig. 2. Response of a spherical shell. Comparison of the exact (E), Cosserat (C), Lukasiewicz (L) and Hashin (H) solutions.
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variation of the temperature field through the shell’s thickness. Also, it is noted that the Legendre functions

for n ¼ 1 and n ¼ 10 are given by
P1ðlÞ ¼ l; P10ðlÞ ¼ � 63

256
þ 3465

256
l2 � 15015

128
l4 þ 45045

128
l6 � 109395

256
l8 þ 46189

256
l10: ð10:16Þ
11. Summary

The main idea of this paper is to point out that linear theories for rigid heat conducting shells which

introduce expressions for the average temperature hðha; tÞ and average temperature gradient h3ðha; tÞ should
be capable of reproducing exact solutions for all constant three-dimensional temperature gradients g�.

Specifically, it was shown in Section 4 that, within the context of the direct approach to Cosserat shell
theory, the constitutive equations for the entropy fluxes fpa; p3; p3ag should satisfy the restrictions (4.8)

whenever the temperature gradient g� is constant and the temperature fields are given by (4.5). In addition,

these constitutive equations must satisfy the second law of thermodynamics (3.11) which requires heat to

flow from hot to cold regions.

The Bubnov–Galerkin forms for fpa; p3ag can be obtained analytically for general shells but they are

quite complicated. In contrast, the expressions (3.12) and (A.10a,b) for fpa; p3ag, which are motivated by

the Bubnov–Galerkin forms for a plate, are used for general shells. The restriction (4.8a) is satisfied by the

constitutive equation (3.12) for fpag, but the restriction (4.8b) is not satisfied when fp3ag is given by (3.12)
and fp3g is given by the Bubnov–Galerkin form (3.14). Moreover, since fp3; p3ag are two linear functions of

three variables fh;a; h3; h3;ag and the shell’s geometry, it is clear that the single restriction (4.8b) is not

sufficient to uniquely determine these constitutive equations. The development in Section 4 uses the

Bubnov–Galerkin form (3.12) for fp3ag and writes (4.8b) in the alternative form (4.10). Then, a new

constitutive form (4.11), with the specifications (4.13), is proposed for fp3g to satisfy the restriction (4.10)

and the second law of thermodynamics.

The resulting set of linear constitutive equations ensures that the Cosserat theory admits exact solutions

for all constant temperature gradients g� and all shell geometries, including shells with variable thicknesses.
Furthermore, the example problems discussed in Sections 8 and 10 demonstrate that the resulting Cosserat
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theory is reasonably accurate for moderately thick shells and moderately strong variation of the temper-

ature field through the shell’s thickness.
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Appendix A. Three-dimensional approach

Multiplying the balance of entropy (2.13a) by a weighting function w and integrating the result over the

thickness of the shell leads to
Z H=2

�H=2

wm� _g� dh3 ¼
Z H=2

�H=2

½wm�s� þ wm�n� þ w;3p�3�dh3 � wp�3
�"

� 1

2
wp�aH;a

�����
h3¼H=2

� wp�3
�

þ 1

2
wp�aH;a

�����
h3¼�H=2

#
�

Z H=2

�H=2

ðwp�aÞdh3

" #
;a

: ðA:1Þ
Also, integrating the energy equation (2.13b) over the thickness yields
Z H=2

�H=2

m� _e� dh3 ¼
Z H=2

�H=2

m�h�s� dh3 � h�p�3
�"

� 1

2
H;ah

�p�a
�����

h3¼H=2

� h�p�3
�

þ 1

2
H;ah

�p�a
�����

h3¼�H=2

#
�

Z H=2

�H=2

ðh�p�aÞdh3

" #
;a

: ðA:2Þ
Then, taking w ¼ 1 and w ¼ h3 and introducing the definitions
m ¼
Z H=2

�H=2

m� dh3; mg ¼
Z H=2

�H=2

m�g� dh3; mg3 ¼
Z H=2

�H=2

h3m�g� dh3;

ms ¼ mðss þ spÞ; mss ¼
Z H=2

�H=2

m�s� dh3;

msp ¼ � p̂�3
��

� 1

2
H;rp̂�r

�
� �p�3
�

þ 1

2
H;r�p�r

��
;

ms3 ¼ mðs3s þ s3pÞ; ms3s ¼
Z H=2

�H=2

h3m�s� dh3;

ms3p ¼ �H
2

p̂�3
��

� 1

2
H;rp̂�r

�
þ �p�3
�

þ 1

2
H;r�p�r

��
;

mn ¼
Z H=2

�H=2

m�n� dh3; mn3 ¼
Z H=2

�H=2

h3m�n� dh3;

pi ¼
Z H=2

�H=2

p�i dh3; p3a ¼
Z H=2

�H=2

h3p�a dh3; me ¼
Z H=2

�H=2

m�e� dh3;

�p�i ¼ p�i ha;

�
� H

2
; t
�
; p̂�i ¼ p�i ha;

H
2
; t

� �
;

ðA:3Þ
yields the balances of entropy (3.5) and the balance of energy (3.6).
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Next, using the kinematic expression (3.1) with the definitions (3.2) it follows that
g�
a ¼ aa þ h3a3;a; g�

3 ¼ a3;

g�1=2g�1 ¼ a1=2a1 þ h3ða3;2 � a3Þ;
g�1=2g�2 ¼ a1=2a2 þ h3ða3 � a3;1Þ;
g�3 ¼ a3; g�1=2 ¼

�
a1=2 þ h3a1=2ðar � a3;rÞ þ ðh3Þ2ða3;1 � a3;2 � a3Þ

�
:

ðA:4Þ
Thus, for constant three-dimensional mass density q� the quantity m in (A.3) is given by
m ¼ q�H a1=2
�

þ H 2

12
ða3;1 � a3;2 � a3Þ

�
: ðA:5Þ
Moreover, using the kinematic assumption (3.1) it follows that the unit outward normal vectors, �n� on the

bottom surface and n̂� on the top surface become
�an� ¼ � a1

�
� H

2
a3;1 �

H;1

2
a3

�
� a2

�
� H

2
a3;2 �

H;2

2
a3

�
�a�n� ¼ � �g�1=2�g�3

�
þ H;r

2
�g�1=2�g�r

�
;

ân̂� ¼ a1

�
þ H

2
a3;1 þ

H;1

2
a3

�
� a2

�
þ H

2
a3;2 þ

H;2

2
a3

�
ân̂� ¼ ĝ�1=2ĝ�3 � H;r

2
ĝ�1=2ĝ�r;

ðA:6Þ
where
�g�1=2�g�1 ¼ a1=2a1 � H
2
ða3;2 � a3Þ; �g�1=2�g�2 ¼ a1=2a2 � H

2
ða3 � a3;1Þ;

�g�1=2�g�3 ¼ a1=2
�

� H
2
a1=2ðar � a3;rÞ þ

H 2

4
ða3;1 � a3;2 � a3Þ

�
a3;

ĝ�1=2ĝ�1 ¼ a1=2a1 þ H
2
ða3;2 � a3Þ; ĝ�1=2ĝ�2 ¼ a1=2a2 þ H

2
ða3 � a3;1Þ;

ĝ�1=2ĝ�3 ¼ a1=2
�

þ H
2
a1=2ðar � a3;rÞ þ

H 2

4
ða3;1 � a3;2 � a3Þ

�
a3:

ðA:7Þ
Furthermore, using the relationship (2.15) for p� in terms of q� it can be seen that the external rates of

supply of entropy fmsp;ms3pg are given by (3.17).

Next, with the help of (2.11a), (2.12), (2.15), (3.4) and (A.4) it follows that:
p�a ¼ � k
h0

1

g1=2
ðg�1=2g�a � g�1=2g�bÞðh;b

�
þ h3h3;bÞ

�
; ðA:8aÞ
p�3 ¼ � k
h0

�
a1=2 þ h3a1=2ðar � a3;rÞ þ ðh3Þ2ða3;1 � a3;2 � a3Þ

�
h3: ðA:8bÞ
Then, the constitutive equations for fpi; p3ag associated with the Bubnov–Galerkin procedure are obtained

by evaluating the integrals in (A.3) using the approximate expressions (A.8). The resulting expressions for
fpa; p3ag can be obtained analytically for a general shell but they are quite complicated. In contrast, the

expression for p3 remains relatively simple and is given by (3.14).
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For the case of a flat plate the unit normal a3 is independent of ha so that with the help of (3.1) and (3.2)

the kinematic quantities (2.10) reduce to
g�
i ¼ ai; g�ab ¼ aab; g�3a ¼ 0; g�33 ¼ 1; g�1=2 ¼ a1=2: ðA:9Þ
Then, the Bubnov–Galerkin forms of the constitutive equations for a plate become
pa ¼ � kH
h0

a1=2aabh;b; p3a ¼ � kH 3

12h0

a1=2aabh3;b; p3 ¼ � kH
h0

a1=2h3: ðA:10a;b;cÞ
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