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Abstract

Although the three-dimensional field equation for linear heat conduction is simple, it is still challenging to obtain
solutions of boundary value problems for shells with general geometry. The formulation of such problems can be
simplified by using specialized equations which model heat conduction in rigid shells in terms of two temperature fields:
one for the average temperature and the other for the average temperature gradient through the shell’s thickness. The
resulting equations are simpler because the field quantities are independent of the coordinate through the shell’s
thickness. However, constitutive equations for the heat fluxes in the shell theory are complicated because they depend
on both the heat conduction coefficient of the material being considered and on the shell’s geometry. The objective of
this paper is to develop restrictions on the constitutive equations in the linear Cosserat theory of rigid heat conducting
shells which ensure that the Cosserat equations produce exact steady-state solutions for Fourier conduction with an
arbitrary constant temperature gradient for all shell geometries including variable thickness. Constitutive equations are
proposed which satisfy these restrictions and example problems of a plate and of circular cylindrical and spherical shells
are solved which examine the accuracy of the Cosserat theory. The results of these examples show that the Cosserat
theory is accurate for moderately thick shells and moderately strong variation of the temperature field through the
shell’s thickness. In particular, the Cosserat solution converges smoothly to the exact solution as the shell becomes thin.
In contrast, the two other theories considered are shown to predict incorrect slopes at the thin shell limit.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical interest in thermal effects in structures (e.g. Boley and Weiner, 1960; Hetnarski, 1986, 1987,
1989, 1996) has focused mainly on predicting deformations and stresses due to thermal loads and not on
predicting heat conduction in the structure. Naghdi (1972) developed general thermomechanical equations
for predicting the evolution of both the deformations and the thermal fields within the context of the theory
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of a Cosserat surface. This theory was reconsidered in Green and Naghdi (1979) from the new thermo-
dynamical perspective proposed in Green and Naghdi (1977, 1978). Lukasiewicz (1989) also developed a
theory for determining thermal stresses in shells and an alternative approach to coupled thermoelastic shell
equations which includes the effects of hyperbolic heat conduction can be found in Altay and Dokmeci
(2001).

Although the three-dimensional equations of linear heat conduction in rigid solids are relatively simple
and many solutions are known (Carslaw and Jaeger, 1956), it is still a challenge to obtain solutions for
general shell geometries. Consequently, it is useful to develop specialized equations for heat conduction in
rigid shells which introduce simplifications of the temperature field through the shell’s thickness. For
example, the Cosserat theory (e.g. Naghdi, 1972; Green and Naghdi, 1979) introduces two temperature
fields which characterize the average temperature and the average temperature gradient through the shell’s
thickness. In Rubin (1986) these Cosserat equations were specialized for the case of heat conduction in rigid
shells. The simplified theory of Lukasiewicz (1989) also introduces two temperature fields which are
determined by energy equations for the shell. More recently, Shvets and Flyachok (1999) have developed a
set of equations for multilayer anisotropic shells using a Bubnov—Galerkin approximation of the energy
equation. Specifically, they introduced four temperature fields associated with a polynomial approximation
up to cubic order in the thickness coordinate. In addition, to further simplify the equations they approx-
imated the local curvature as the curvature on a single reference surface in the shell.

Another application of heat conduction in rigid shell-like structures is related to interphases in com-
posite materials. In the works of Sanchez-Palencia (1970), and Pham Huy and Sanchez-Palencia (1974) the
interphase was approximated as a single interface surface and imperfect interface conditions were proposed
separately for weakly and highly conducting interphases. Recently, Hashin (2001) used a Taylor series
expansion to develop heat conduction equations for thin (but finite thickness) interphases. These equations
are shell-type equations which introduce two temperature fields and are valid for interphases with general
geometry. In contrast with the previous work which proposed different equations for weakly conducting
interphases from those for highly conducting interphases, Hashin’s equations are unified in the sense that
the same equations are valid for the entire range of conductivity of the interphase.

Within the context of the Cosserat theory for heat conduction in rigid shells, the dependence of the two
temperature fields on the coordinate through the shell’s thickness is eliminated. This simplifies the equa-
tions since the field quantities depend only on time and the two spatial coordinates which characterize
material points on the shell’s middle surface. However, this elimination procedure causes the constitutive
equations for resultant flux quantities to depend on the shell’s geometry even when the associated three-
dimensional fluxes (e.g. for Fourier heat conduction) are trivial. Consequently, even within the con-
text of linear theory, the development of specific functional forms for these resultant flux quantities is not
trivial.

For the purely mechanical theory of shells, it is well known that the constitutive equations for shells
depend on both the properties of the material used to manufacture the shell and on the specific geometry of
the shell structure. However, given a specific uniform homogeneous elastic material and a specific shell
geometry it is not known how to specify the strain energy function for the elastic shell structure. Naghdi
and Rubin (1995) made some progress in sorting out the individual contributions of material and geometry
properties of the shell by developing restrictions on the constitutive equations for shells which ensure that
the shell equations produce exact solutions for all homogeneous deformations of non-linear elastic shells
with general reference geometry. These restrictions are fundamental in nature because they are valid for
large deformations.

In this paper, attention is confined to Fourier heat conduction but the rigid shell can have general
geometry including variable thickness. It is well known that the equilibrium equation for steady-steady heat
conduction in the absence of external heat supply requires the divergence of the three-dimensional heat flux
vector to vanish. For linear Fourier heat conduction this equation is automatically satisfied for all constant
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temperature gradients. Moreover, since the Cosserat theory with two temperature fields can model a
general constant three-dimensional temperature gradient exactly, it should be possible to develop restric-
tions on the thermal constitutive equations for shells which ensure consistency with exact solutions for
arbitrary constant temperature gradients. The objective of this paper is to develop these restrictions.

In contrast with the purely mechanical restrictions (Naghdi and Rubin, 1995) which were valid for
general non-linear homogeneous deformations, these thermal restrictions are valid only for the linear
theory of heat conduction with small temperature variations from a uniform reference temperature. This is
because for the general non-linear theory of heat conduction the heat flux vector can depend on both the
temperature and the temperature gradient. Consequently, the linear spatial variation of the temperature
field associated with a constant temperature gradient can cause non-vanishing divergence of the heat flux.
However, for the linear theory of Fourier heat conduction these thermal restrictions still impose non-trivial
conditions on the constitutive equations since they are valid for general shell geometry. In this regard, it is
noted that the constitutive equations in Rubin (1986) do not satisfy these restrictions.

An outline of this paper is as follows: Section 2 briefly reviews equations for a rigid heat conductor which
are a special case of the three-dimensional thermodynamical formulation proposed by Green and Naghdi
(1977, 1978). Section 3 develops the equations for a heat conducting rigid Cosserat shell by the direct
approach. Section 4 develops the restrictions on the constitutive equations which ensure that the linear
Cosserat equations produce exact solutions for arbitrary constant temperature gradients in a shell with
general geometry. Section 5 summarizes the models proposed by Lukasiewicz (1989) and Hashin (2001).
Section 6 considers an example of transient heat conduction in a plate to establish the validity a modified
constitutive coefficient. Section 7 specializes the Cosserat equations for a general cylindrical shell, and
Section 8 considers example problems for a circular cylindrical shell. Section 9 specializes the Cosserat
equations for a spherical shell and Section 10 considers an example problem for a spherical shell. A
summary of the main results is presented in Section 11. Finally, Appendix A provides details of the three-
dimensional approach.

Throughout the text, the usual summation convention is used for repeated lower case indices with the
range of Latin indices being (i = 1,2, 3) and that of Greek indices being (o = 1, 2).

2. Three-dimensional theory

The objective of this section is to briefly summarize aspects of the three-dimensional thermodynamic
formulation proposed by Green and Naghdi (1977, 1978). Specifically, attention is confined to a rigid heat
conductor and initially the absolute temperature field 6" (0" > 0) is not restricted to small variations from
the uniform constant reference temperature 0y. Also, to ease comparison of the three-dimensional equa-
tions with corresponding equations in the Cosserat theory of shells discussed in the next section, similar
quantities appearing in both theories are denoted by the same symbol, but with a superposed (*) attached
to the symbol associated with the three-dimensional theory.

In this theory the temperature field is determined by solving a balance of entropy proposed in the form

ot = ptst + ptE — divip’, (2.1)

* *

where p* is the mass density, #* is the specific (per unit mass) entropy, s* is the specific external rate of
supply of entropy, & is the specific internal rate of production of entropy, p* is the entropy flux per unit
area, and div" is the divergence operator with respect to the position x*(#') of a material point. In general
the quantities depend on three convected coordinates ¢’ (i = 1,2, 3) and time ¢. Also, the balance of energy
is given by

piE = p'0°s" — divi (0°p") = pr — div' (q"), (2.2)
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where &* is the specific internal energy, and the rate of external supply of energy »* and the heat flux vector
q* are related to s* and p* by the expressions

=05, q =0p". (2.3a,b)
Moreover, it can be shown that
div'(0p") =p* - g + 0°div'p’, g'=00"/0x", (2.4)

where g* is the temperature gradient. Then, using (2.3), (2.4) and the definition

W= — 0 (2.5)
of the Helmholtz free energy y*, it follows that the energy equation (2.2) can be rewritten in the form
PO =—p g —p (U 0). (2.6)
Now, for a rigid heat conductor the constitutive equations are assumed to take the forms
Y=yr0), nt=n(0), pr=p(0g), &=(0,g). (2.7)

In the thermodynamic procedures proposed by Green and Naghdi (1977, 1978) the balance of entropy (2.1)
is used to determine the temperature field and the reduced form (2.6) of the balance of energy is used to
obtain restrictions on constitutive equations. Specifically, (2.6) is assumed to be valid for all thermo-
mechanical processes, which yields the standard restrictions on these constitutive assumptions of the forms

o
*:—— *9**:—*~*. 28b
n a7 POE =18 (2.8a,b)
Also, one form of the second law of thermodynamics requires heat (or entropy) to flow from hot to cold
regions which is equivalent to requiring the rate of internal production of entropy to be non-negative

For the discussion of shells in the next section it is necessary to use general curvilinear coordinates. Most
often, this leads to the notions of covariant differentiation. However, following the approach used in (Green
and Zerna, 1968; Rubin, 2000) the equations can be expressed in alternative forms which require knowledge
only of partial differentiation. To this end, let the base vectors g, their reciprocal vectors g, the scalar g*!/?
and the metric g*/ be define by the equations

g =x, g-g/=0, ¢g'=gxg g>0 gV=g" g (2.10)

where a comma denotes partial differentiation with respect to . Then, the gradient and divergence
operators have the properties that

g = grad’0" = 0g", g2divip” = (g"*p -g"). (2.11a,b)
Next, defining m* and p* by
mt = p*g*l/Z7 p*i _ g*l/Zp* . g*i7 (212)

the balance of entropy, balance of energy and the second law of thermodynamics can be written in the
forms, respectively,

mi =m's"+m'E —pi, m'E=m0s —(0°p),, (2.13a,b)
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For the simplest case of a constant specific heat ¢ and Fourier heat conduction
o o k
V=c|0—00—0"In< — |, ni=clnq—> &=c0—0), q"=—-kg', p=—=¢g,
0o o 0
(2.14)

where £ is the constant heat conduction coefficient. Then, for small values of s* and for small temperature
variations, quadratic terms in (0" — 0y) are neglected and these constitutive equations and (2.3a) reduce to

* c * 2 4 * *
=——(0"—10,)", f=—(0" = 0y), & =c(0°—10,), = —kg",
v 200( )% 00( b) ( ), 4q g
p*:7_9]€()g*’ PO E =0, ¥ =0 (2.15)

and the balance of entropy becomes

It can easily be shown that apart from a constant factor of 6, this is the same equation as that due to the
balance of energy (2.2). Moreover, in the absence of external rate of entropy supply (s* = 0) (2.16) reduces
to the standard equation for linear heat conduction

p*CG* _ kv*26*7 V*ZG* _ g*_l/z[g*l/zg*ﬁei]‘/, (217)

where V*2 is the three-dimensional Laplacian operator.

3. A rigid heat conducting Cosserat shell

The balance laws of the theory of a Cosserat shell can be developed by integrating the three-dimensional
equations or they can be developed using the direct approach which postulates them directly. However, the
constitutive equations of the shell are always developed within the context of the direct approach. Here, it is
convenient to use the notation proposed in Rubin (2000) which differs from that in Naghdi (1972), Green
and Naghdi (1979) and Rubin (1986). Specifically, attention is confined to a shell which has variable normal
thickness H(0"), and a material point in the shell is the located by the position vector x* which admits the
representation

X = x"(0) = x(0") + 0’a3(0"), —H(zoa) <0< H(ZO‘“) : (3.1)

where x locates material points on the reference middle surface (6° = 0), a; is the unit normal to that
surface, and the convected coordinates of the surface are denoted by 6* (« = 1,2). The tangent vectors a,,
their reciprocal vectors a*, the metric a*¥ and the scalar a'/? associated with this middle surface are defined
by

a; X a, 12

a, =X,, ad-aﬁzéf, af =a*-af, a, =a; xa -a3 >0, a"‘:a“ﬁa/j. (3.2)

- la; x ay|’
In addition, the following identity is recorded for later convenience

(a'?a%),, = —a'?[(a” - a3,)as]. (3.3)
Also, the temperature field is assumed to be represented in the form

0" = 0°(0',1) = 0(0",1) + 6°05(0", 1), (3.4)
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where 6 > 0 is the average absolute temperature and 0; is the average temperature gradient through the
shell’s thickness. (Here, the common symbol 8 for temperature is retained, so powers of 6 or 6; will be
indicated using parentheses to avoid confusion with the convected coordinates 6'.)

For a rigid heat conducting shell these temperature fields are determined by solving the balances of
entropy which take the forms

mip=m(s+ &) —p’, miy =m(s’ +&)+p —p¥, (3.5)

where m is the mass per unit area d0' d6?, i and #* are the specific entropies, s and s® are the specific external
rates of supply of entropy, ¢ and & are the specific internal rates of production of entropy, p* and p* are
entropy fluxes and p? is an intrinsic rate of supply of entropy. Also, the balance of energy is given by

mé = m(0s + 03s3) —(0p” + 03p3“)‘1, (3.6)

where ¢ is the specific internal energy. Appendix A presents a derivation of these equations using the
Bubnov-Galerkin approach based on weighted integrals of the three-dimensional equations.

Following the thermodynamic procedures for the three-dimensional theory, the specific Helmholtz free
energy Y of the shell is defined by

Y =¢—0n— 0’ (3.7)
and the balances of entropy are used to obtain the reduced energy equation in the form
m(0¢ + 0,8 = —p*0, — p'0s — p™03, — m(Y + 00+ n°03). (3.8)

Now, for a rigid heat conducting shell the constitutive equations are assumed to take the forms
lp:lp(0703ag)v ’7:77(07337g)» 173:7]3(9703’%)7
p=p), pr=p"(r), =¢&v), &=, (3.9)
Y= {07 63; 941; 03,o<; g},

where ¥ represents the shell’s geometry. Again, using procedures similar to those discussed in Section 2 for
the three-dimensional theory, the reduced balance of energy (3.8) is assumed to be valid for all thermo-
mechanical processes which yields restrictions on these constitutive assumptions of the forms

dy dy/ 3 3 3

=—— =—— 0¢+0 = —p“0,—p’0; — p*0;,. 3.10
’7 60? ’/I 603, m( é+ 35) p 3 p 3 p 3~ ( )
Also, one form of the second law of thermodynamics requires heat (or entropy) to flow from hot to cold

regions which is equivalent to requiring the rate of internal production of entropy to be non-negative
m(0¢ + 0;8) = —p*0,, — p*05 — p*03, > 0. (3.11)
For small temperature variations from the constant uniform temperature 0, (with 6; = 0), the consti-

tutive equation (2.14) in Rubin (1986) suggest that

cH? cH?

S0 .2 —Sp_ 3_ ot
Y= 200 (0 — 0o) 2720, (0:)°, 7 0o (0—00), n 200 0s,
kH kH?
P = - [al/Zaoc/f]Hﬁ’ P = = [al/za“/’]ﬁ " (3.12)
o o

e=c(0—0y), ¢=0, &=0.
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These constitutive equations for {p*, p**} and the constitutive equation (A.10c) for p?
s kH

= 0

for p* are consistent with the Bubnov—Galerkin forms (A.10) for plates (a3, = 0) and can be proposed for

shells as well. However, in (Rubin, 1986) p* (which is equivalent to m¢, there) was specified by the modified
form

a0, (3.13)

2
p3 = —kH—H al/z +]1—]—2(3371 X azp - 33) 037 (314)
o
which is consistent with the Bubnov—Galerkin form for general shells. Also, for constant mass density p*
the mass term m in the balance laws is given by (A.5). Moreover, it is noted that for shells the explicit
dependence of the constitutive equations on the shell’s reference geometry was not specified in Green and
Naghdi (1979).
Furthermore, it can be shown that the expressions (3.12) for p* and p** yield the results

kH k kH? kH?
o 7 12 ZH__Hac 1/2 of 0 o0 1/2v29 ——H“ 1/2 of 0
p,a 00 a vs 00 ) [a a ] B p,gx 1200 a sV3 400 , [a a ] 3,65
V0 =a '*(a"?a0,),, (3.15)

which express the surface divergences of these quantities in terms of the surface Laplacian V? of the
temperature fields 0 and 03, respectively.
Next, from Appendix A it is recalled that the assigned fields ms and ms® can be separated additively into

two parts

ms =m(s,+s,), ms =m(s]+ s;)7 (3.16)
where ms, and ms? are due to the three-dimensional external rate of entropy supply s*, and the terms ms,
and msz, due to entropy supply through the bottom and top surfaces of the shell, are given by

ms, = —9—0[&21 — ag, msz = —2—90[6@ + agl,

- p~t.3 ok ~ ok 2k ~t3 * o H ok * o H (3'17)
4g=—q -n, g=q - -n, q=(q 07__7t7 qQ =q 97_7t
2 2
for small temperature variations from 6,. In these expressions g is the heat flux into the shell through its
bottom surface and ¢ is the heat flux out of the shell through its top surface. Furthermore, the unit outward
normal vectors {n*,n} to the bottom and top surfaces, respectively, and the scalars {a, 4} are given by

| g*1/25%3 0 —xl/2=%0

on® = I—L ARE — 5+1/25
om—gg+2gg,am—g

* HUA* KT
e (3.18)

in terms of the vectors defined in (A.7).
Thus, for small temperature variations the linear forms of the balances of entropy reduce to

. .. __ . H ..
mi) = ms; — — (4§ — aq] — p’, mip* = ms) — ——[4g + ag) + p’ —p?;‘, (3.19)
0o 20,

which are subject to initial and boundary conditions. Now, in the absence of external entropy supply
(s, = s> = 0) and confining attention to steady-state these equations can be solved for g and ¢ to obtain

7700 1 o 1 3 3o A 1 o 1 3 3o
qi 5( 2poc+H(p p,zx) ) qi & 2p,zx H(p p,o() ° (320)
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Also, using the assumption (3.4) it follows that the temperature fields 6 and 05 are related to the temper-
atures 6 and 6 associated with the shell’s bottom and top surfaces, respectively, by the expressions

1. - 1

0==(0+0), 0325(9—@). (3.21)

4. Restrictions for constant temperature gradient

For constant temperature gradient g* it follows that the three-dimensional temperature field 6" is given
by

0" =04+g - (X' —x4), (4.1)

where 0, is the temperature at the material point x,. Moreover, in the absence of external entropy supply
and confining attention to steady-state the non-linear balance law (2.1) reduces to

div'(q*) = 0, (4.2)

where use has been made of the relationship (2.3b) and the constitutive equation (2.8b). However, in
general the non-linear constitutive equation for heat flux depends also on 0", which is a linear function of
x*, so that (4.2) is not necessarily satisfied for a constant temperature gradient.

In contrast, for small temperature variations from 6y, p* and q* are linear functions of g* which are
independent of x* (since 6" in p* is approximated by 6,). This means that for steady-state and in the absence
of external entropy supply, the approximation of the balance law (2.1) (with &* =0 since it is second-order
in temperature) reduces to

1
div'p* = G—div*q* =0, (4.3)
o

which is satisfied in general for constant temperature gradient in shells made from uniform homogeneous
materials. Consequently, it should be possible to propose restrictions on the constitutive equations for the
linear theory of a rigid heat conducting shell which ensure that the resulting steady-state balance laws in the
absence of external entropy supply are consistent with the exact equations for arbitrary constant tem-

perature gradient g* in shells with general geometry. Specifically, for this case the balances of entropy (3.19)
reduce to

| " H .. __ "
— o [6g +ag) = p, =0, —5-[4g —ag] +p* —p) =0. (4.4.a,b)
60 290
Moreover, substituting (3.1) into (4.1) and using (3.4) yields the expressions
0=0,+¢g - (x—x4), 0:3=¢g -a;, 0,=¢g -a,, 0O;,=¢g -a;, (4.5)

for a constant temperature gradient g*. Also, in view of the specifications (3.17) and (3.18) it follows that for
Fourier heat conduction (2.15), the quantities {ag,ag} are given by

== — % =23 HU—* —*0 *
g = —k{g R ] g,
PN A P HUA* AxO *
g = —k{g 2g -5 8 "7z ] ‘g

in terms of the vectors defined in (A.7).
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For general shell geometry Eq. (4.4) are non-trivial even for constant g*. In particular, using the con-
stitutive equations (3.12) and (3.14) it was shown in Rubin (1986) that these equations were not satisfied for
a specific case of constant temperature gradient in a problem for a circular cylindrical shell with constant
thickness. The objective here is to modify these constitutive equations so that (4.4) is satisfied for arbitrary
g* and arbitrary shell geometry. Specifically, it will be shown that the constitutive equation (3.12) for p* and
p** can be retained but the constitutive equation for p* must be modified relative to (3.13) or (3.14).

To this end, Eq. (3.20) can be rearranged to obtain
1 o - o 3 H ~n = 3o
g 6q —ag)+p, =0, p =5-[4q+ag] +p;. (4.7)

o 0
Next, using (3.18), (4.6) and (A.7) these equations yield restrictions on the constitutive equations for
{p*,p*,p*} of the forms

k
~ [Ha'(a - a;,)a; — H,a"*a’] - g" 4 p*, = 0, (4.8a)
0
k H* : H?
P = 0, {H{a‘& +T(a3,1 X as; - az)}a3 - THl(az,z X a3) — TH,2(33 xay)| g +pff~ (4.8b)
Moreover, using (3.3), (4.5) and the constitutive equation (3.12) for p* and p* it can be shown that
a'?a0 4 = a'*a* - g, (4.9a)
k
P= o [Ha'(a - a;,)a; — H,a'*a°] - g", (4.9b)
al/za“ﬁﬁgﬁ = [al/zaaﬂa&ﬁ] . g*, (490)
k [H? H? :
pr=——|==(a"a"as,)  + —H.,(a"*a"a;,)| - g (4.9d)
: 0o | 12 T4

Thus, with the help of (4.9b) it follows that (4.8a) is satisfied for all shells and all values of g*. Consequently,
the constitutive equation for p* need not be modified. Moreover, assuming that the constitutive equation
for p** also needs no modification, Eq. (4.8b) requires

kH H? H? .
p3 = —— dl/2 —&-—(33,1 X azy - 33) as —&——(al/za”'ag,g)ﬁ
0o 4 12 7

H ) *
+Z {H_,l,(al/za”/agv(,) — H\](a:;‘z X 33) — Hyz(a\g X 2311)} g . (410)

In particular, it can be seen that neither of the constitutive equations (3.13) or (3.14) satisfy the restriction
(4.10) for general shell geometry.
To motivate a modified constitutive equation for p? it is noted that, for the general linear theory, p* is a
linear function of {6,, 05, 0;,} which can be expressed in the form
kH
pP=- 5 (B0, + B0, + B0,,], (4.11)
0
where {B*, B*, B**} are functions of the shell’s geometry. It therefore, follows from (4.5) that for constant
temperature gradient p* takes the form:
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P = ke—H [B*a, + B’a; + B¥a;,] - g". (4.12)
o
However, since a;, are vectors tangent to the shells middle surface they can be expressed in terms of their
components in the a, directions. This emphasizes that the expressions for {B* B* B3} cannot be deter-
mined uniquely. Moreover, in proposing a constitutive equation for p? it is also necessary to recall that the
complete set of constitutive equations must satisfy the second law of thermodynamics (3.11). Therefore,
for simplicity (4.10) is solved by specifying

H? ,
B* — |:_( l/2a0yala)

H .
2 ) +Z {H}aal/za”’agﬁ}, — H.l(aj;’z X a3) — HA2(33 X 3371)} . a“,

H? H? (4.13)
B = {auz T (a1 X @32 - a3) + - {(al/za“”"a&(,)y : a3}} , B¥=0,
which yield a non-trivial generalization of (3.13) and (3.14).

Next, it is necessary to check the validity of the second law of thermodynamics for the constitutive

equations (3.12) and (4.11). Specifically, using (3.11) it follows that
H H H H?
—p‘“O.a —p393 _p3“03.o< = k— [al/za“ﬁ]ﬁaﬁl; + k—B“H 0(93 + k—BS(03)2 + k—[ l/za“ﬁ]03‘1034,}. (414)
. . 0, , 0o ’ 0, 126, :

However, these terms can be rearranged to deduce that

kH 1 1
—p“Oﬂ —p303 _p3“03,o< = 0— |:a1/4310‘0( + 5(11/4B03:| . {al/“aﬁO,ﬁ + 5(171/41303
0

kH ,  kH? s
+0—0G(93) Jrﬁgo[al/za 710505 4, (4.15)
where the vector B and the scalar G are defined by
1
B=5", G= {33 - Za”/zB - B} . (4.16)

It then follows that (4.15) will remain non-negative (i.e. heat flows from hot to cold regions) provided that
the function G is positive. This places limitations on the thickness /# and on the variation of the thickness of
the shell relative to its local radii of curvature. In the remainder of this work it is assumed that this con-
dition is satisfied. Further in this regard, it is noted that the shell’s thickness is also limited by the condition
that the convected coordinates 6’ provide a one-to-one mapping to all material points, which requires g*!/?
in (A.4) to remain positive.

In summary, the constitutive equations for the Cosserat model are given by (3.12) and (4.11) with the
specifications (4.13), and the equations of heat conduction are given by (3.19). Moreover, for steady-state
problems in the absence of external entropy supplies these equations can be solved for the heat flues g and
g to obtain (3.20). Also, the temperature fields 0 and 0; are given by (3.21).

5. Summary of two other models

The objective of this section is to summarize two other models for heat conduction in rigid shells
proposed by Lukasiewicz (1989) and Hashin (2001). Lukasiewicz (1989) developed a general thermoelastic
model for deformable shells as well a simplified model for transient heat conduction in rigid shells. Here,
attention is confined to the steady-state form of the model for rigid shells with constant uniform normal
thickness. By way of background, it is first noted that for orthogonal coordinates
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\/ \/ 1 1
a-a, =0, [ o } = ana% { % ] :—ﬁaa, 31 = 54, 33 = A, (5.1)
vau |, R Van |, Ry R, Ry

where the magnitudes of R, and R, are local radii of curvature. Now, the variables {4, H,T1,T»,q, ,q;} in
Lukasiewicz (1989) are related to the variables used here by the expressions

1] 1 1 H - .
h=H, H__Z{RI_FRJ’ Ty = 0 — 0o, T2—503, 9 =49 49, =49 (5.2)

Then, the equations (6.27) [The expression 7, there should be 4/k instead of k/h as stated; Lukasiewicz
(2003, personal communication)] in Lukasiewicz (1989) can be rewritten in the forms

B k 1 /K + K2\ H?_, H®_,
=—— |-z - — HOy — —
g H{ 2( : )(0 00) + 5 V20 + HOy =55 V204 . .
. k1 /K +r2\2 H>_, H_, '
=——|= —0y) — — HOy — —
g H[2( . )(9 00) — 5 V204 HOy = 75 V205

where the Laplacian V? associated with the shell’s middle surface is defined by (3.15) and «; and k, are
normalized measures of the thickness relative to the local radii of curvature

H H

E, Ky = sz (54)

K| =
Hashin (2001) developed a model for a thin interphase which unified the more classical models asso-
ciated with weakly conducting interfaces (Sanchez-Palencia, 1970) and highly conducting interfaces
(Pham Huy and Sanchez-Palencia, 1974). The equations in Hashin (2001) were developed using an
orthogonal curvilinear coordinate system. To compare this model with the Cosserat model it is noted that
the variables {oy, o, 03, k;, 2, b, ¢, g}, 42} in Hashin (2001) can be related to the variables used here by the
expressions

=0, =0, u=0, k=k t=H ¢ =0, ¢’"=0, qy=q, ¢ =4 (55)
Also, with the help of (5.1) the parameters {/,,%,} in Hashin (2001) are given by

0\’ 0\’
h] = (1]1(1+R—1) , h2: 022<1+R—2) ; (56)

so that
I o 2 2
mo»*_y/z_\/m(z—’ﬂ)(z—'c)’ 57
1 3(hihs) I 2 2 '
hihy  00° 03_H/2H{2—K1 2—K2]’

Next, using these results the steady-state forms of Eqs. (5) and (17) in Hashin (2001) can be rewritten as
q = —kbs,

—k[l— w2 ]03+kH< 2 )( 2 )Vf@ (5.8)

2—l€1 2—K2 2—K1 2-1(32

q

where the Laplacian associated with the shell’s middle surface is defined in (3.15) and 65 is specified by
(3.21). In particular, it is noted that these equations were developed using a Taylor series expansion about
the surface 0° = —H /2 so they are biased towards that surface.



7020 M. B. Rubin | International Journal of Solids and Structures 41 (2004) 7009-7033

6. Example of transient heat conduction in a plate

The coefficient for #* in (3.12) is different from the associated coefficient determined by Green and
Naghdi (1979). Although this coefficient was used in Rubin (1986) it was determined in unpublished results
which compared the Cosserat solution with an exact solution in Carslaw and Jaeger (1956, p. 112). Here,
this value can be justified by considering a simpler problem of transient heat conduction in a plate of
constant thickness H. Specifically, consider the problem of an insulated plate which initially has the tem-
perature distribution specified by

3
6*(03,0):00+§sin (7;0;) (6.1)

where f§ controls the magnitude of the temperature field. Also, the boundary conditions require
H H
0 (~5r) =a0e =0, a(5.1) =ate =0 (62)

It is easy to see that the exact solution of (2.17) for this problem is given by

(0’ ke
0" = 0y + A(1) sin (%) A(r) = g exp (- p*;;z)' (6.3)

It therefore follows with the help of (3.21) that this exact solution is consistent with the results:

00%,1) = 0o — A(£), 0(6%,1) = 0o+ A(t), 0(0%,1) = 0y, 05(6%,1) = 2AT(I). (6.4)

For the Cosserat model of a plate, the position vector x and the unit normal a3 are given in terms of the
fixed rectangular Cartesian base vectors e; by

x=0%,, a,=e, a3;=e;. (6.5)
Thus, the balance laws (3.19) for a plate can be rewritten in the forms

p*Hel = Ogms, — (g — q) + kH V20,

CH2 . H R kH3 (66)

Specifically, for the problem under consideration the external entropy supplies vanish and the temperature
fields are {0, 65} are functions of time only so these equations reduce to

. . km?

0=0, 03__W 3. (6.7)
Moreover, the initial conditions are specified to be consistent with the exact solution (6.4) with

000) =t 030) = (68
so that the solution of (6.7) gives

B km’t
0(¢) = 0y, 05(¢) == — 6.9
()=t 00) = exp (= ), (69)

which is identical to the exact results (6.4).
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7. Equations for a general cylindrical shell with constant thickness

The objective of this section is to reduce the theory of Sections 3 and 4 to the setting of a general
cylindrical shell which is infinitely long in the axial direction but has constant normal thickness H. Spe-
cifically, the axial direction of the shell is taken to be the unit constant vector e; with the axial coordinate z.
Moreover, the coordinate €’ is retained as the normal coordinate to the shell’s middle surface (6° = 0), and
the two other coordinates defining points on this middle surface are specified by

0'=s, *=z (7.1)

where s is the arclength coordinate of the curve defined by the intersection of the middle surface with the
z = 0(e; — ep) plane. Thus, material points on the shell’s middle surface are located by x and the kinematic
definitions (3.2) yield

ox _Ox

X =X(s,2), a= 0 RS Te mmaxa, a?=1, a*=a,, (7.2)
where a; are a set of right-handed orthonormal vectors. It then follows that

Oa; 1 Oa; Oas; 1 Oas B

> R %0 o R o0 R=R), (73)

where R is positive for convex curves (relative to the origin) and negative for concave curves, and its
magnitude is equal to the variable local radius of curvature of the shell’s middle surface. Also, the tem-
perature fields are given by

0=0(s,z,t), 0;=05s,z1). (7.4)
Moreover, for this geometry it can be shown using (3.12), (3.18), (4.11) and (4.13) that
plz_[kH}af) ) [kH]@G 31:_[kH3}603 32:_[kH3]603

0 a0 P T 6, |z 126, | 8s 126, | 0z
kH K2 kH [ x*0R] 00
R [l Y I I il ) el B 7.5
P {HOH 12}9”[90”12@}%’ (75)
&_27 K &_2+K3
- 2 ) - 2 )
where « is the ratio of the thickness to the local radius of curvature
H
=—. 7.6
K=o (7.6)

Thus, for cylindrical geometry the steady-state equation (3.20) reduce to

k(2 N[E®0 B0\ ([ RN CHORM H (30, 20,
1= "m\2-x)| 2 o2 " o2 2)"" T2 sas [ 1210 a2 [

k(2 N[_ER[@0 @0V ( (RN, CHORW| H (0 20
H\2+x« 2 ) 0s2 o2 12 7712 s Os 121 02 o2 |

q =
(7.7)
Also, the function G in (4.16) is given by
K2 Kkt (dR\?
o= _E_%(E>’ 7

which must remain positive.
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Similarly, for this geometry x; = k and k, = 0 so that Lukasiewicz’s (1989) equations (5.3) become

k 2 H* (*0 %0 H? (%0, %0
q:_—[—%(9—90)+7(—+—)+H93——( >+ 3)]7

H 0s> | 022 10\ s = 02 (79)
. k [ K2 H® (%0 %0 H? (%05 %05 '
q—‘ﬁfgw‘w‘z<&fW@)*H%‘m<aﬁ+5zﬂ
and Hashin’s (2001) equations (5.8) become
_ k . k([ 2 2 -3k (%0 o0

8. Examples of a circular cylindrical shell

Consider the problem of a circular cylindrical shell which has inner radius a and outer radius 4. Then,
the constant mean radius R and uniform thickness H satisfy the equations

H 2- 2
R=Fl o _h_a K= a:R( "), b:R( +K>. (8.1)

2 2 2
Now, for cylindrical polar coordinates the three-dimensional position vector x* takes the form
X" =re(¢) +ze;, (8.2)
where the unit base vectors e, and e, are given by
e, (¢) = cos e + sin pey, e,(¢p) = — sin ¢e; + cos de;. (8.3)

Also, the polar angle is denoted by ¢ in order to avoid confusion with the temperature field 0.

In this section attention will be confined to two-dimensional steady-state problems for which the tem-
perature fields are independent of z and ¢. For this class of problems the exact temperature field 6 satisfies
(2.17) which reduces to

o%0" 100" 1 %

e gy = (84)
Moreover, taking
0'=¢, 0=z, s=R¢. (8.5)

The Cosserat equations (7.7) require
2 A2 2 2 2
S k(2 \[E@0 (R eH 0]
H\2-x)|2 d¢? 12 12 9¢?

k 2 K> 0%0 K2 K2H 0204
(e o ()t 5]

>
I
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Lukasiewicz’s (1989) equations (7.9) require

k K2 K2 0%0 K2H 0204

Gg=——|——(0— - Y HO -

! H{ T 6¢>2]’ (8.7)
k [ K2 920 K*H 920 '

= ——|—(0—0) —— —+ HO; —— — 2

T="H { g0=0) =3 0’ HO =5 a¢2}

and Hashin’s (2001) equations (7.10) require
_ k . k 2 2 -3k 00
q:_E[H03], "__H(z—x> l( 3 )H&—xzad)z]. (8.8)

Also, the function G in (7.8) remains positive since dR/ds = 0 and x < 2.

In Section 3 the Cosserat equations were modified to ensure that they reproduce the exact solution for a
constant temperature gradient in any direction. Therefore, to explore the differences between these three
models it is possible to consider the simple steady-state solution of constant temperature gradient f§ in the
e; direction for which the temperature fields are given by

_ 2
0" =0y + Prcos¢p, 0 =0+ fRcos¢p, 03 = fcosda, 0:00+[3R<TK>COS¢,

@z&ﬁ-ﬁR(HTK)cosqb (8.9)
and the exact solutions for the heat fluxes become

g=Qcos¢, §=Qcoshp, O=—kB, Q=—kp. (8.10a,b,c,d)

Next, substituting (8.9) into the Cosserat equation (8.6) yields the exact solution (8.10) for g and ¢. In
contrast, Lukasiewicz’s (1989) equations (8.7) predict the forms (8.10a,b) with

_ Sk K32 . 5k K2

Q:—[l—§+m}kﬁ, Q:—{l+§+m]kﬂ (8.11a,b)
and Hashin’s (2001) equations (8.8) predict the forms (8.10a,b) with

~ - 2-35 2

Q=—kp, O=- [zi_c;cﬂc}k.& (8.12a,b)

neither of which predict the exact solution (8.10). Moreover, a series expansion of these solutions indicates
the solutions (8.11a,b) and (8.12b) are only accurate to zero-order in k. This means that the solutions
(8.11a,b) and (8.12b) do not predict the correct slope in the thin shell limit (x — 0).

The equations for rigid heat conducting shells should produce reasonably accurate predictions when the
shell is thin. However, it is well known that the notion of “thin” is not purely geometrical and that the shell
theory is accurate when the variation in quantities through the shell’s thickness is not too severe. Therefore,
it is of interest to explore the limits of shell theory by considering a class of problems which allows for
control of the variation of the temperature field through the shell’s thickness. To this end, consider the class
of exact solutions of (8.4) for which

0" = 0+ 0" (r) cos(ng), O(r) = [A(E)" + B(EH, g = 0" (r) cos(nh),

A(%)H —B(R)Hl}, (8.13)

~

k

o' (r) = — gk

~ |




7024 M. B. Rubin | International Journal of Solids and Structures 41 (2004) 7009-7033

where the constants 4 and B are determined by boundary conditions, ¢* represents the radial component of
the heat flux vector and the integer n controls the variation of the temperature field through the shell’s
thickness. For the problem under consideration the boundary conditions are specified

where f§ controls the magnitude of the temperature at the outer surface. It then follows that the exact
solution of this problem is obtained by solving the equations

2—x\" 2\ 2+x\" 2\
S R RV E R o5

to obtain

) |y s | (B g (8.16)

- /7 \n n
(32)" - (&) ()" - (&)

Consequently, the normal components g and ¢ of the heat fluxes at the inner and outer boundaries,
respectively, take the forms

g =0cos(ng), §=Qcos(ng), (8.17)

where the constants O and @ are given by

A=

[S]

(8.18)

(32)" - (&)
For the Cosserat shell model the temperature fields in (3.21) associated with (8.13) and (8.14) are
specified by

0 =0, +§ cos(ng), 0= g cos(ng), 0=0, 0=0y+ pcos(np) (8.19)
so that Egs. (8.6) yield heat fluxes in the forms (8.17) with

— k( 2 K? ) ~ k( 2 K? 5
Similarly, Lukasiewicz’s (1989) equations (8.7) yield heat fluxes in the forms (8.17) with

—_ k[ 1 3, ~  k (1 7,

0= H{l K{16+20n HB, 0= H{1+K{16+20n p (8.21a,b)

and Hashin’s (2001) equations (8.8) yield heat fluxes in the forms (8.17) with

_ k ~ k[2-3k
Q:—ﬁﬁ, Q:_E[2K:|ﬁ. (8.22a,b)
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Fig. 1. Response of a circular cylindrical shell. Comparison of the exact (E), Cosserat (C), Lukasiewicz (L) and Hashin (H) solutions.

It can be shown that the Cosserat solution (8.20) predicts the exact solution (8.18) for all values of « (all
thicknesses of the shell) when n = 1. However, for other values of n the Cosserat solution is only
approximate. A series expansion of these solutions indicates that the Cosserat solutions (8.20a,b) are both
accurate to third-order in x, whereas the other solutions (8.21a,b) and (8.22a,b) are only accurate to zero-
order in x. This means that the solutions (8.21) and (8.22) do not predict the correct slope in the thin shell
limit (x — 0). Fig. 1 compares the predictions of these solutions for a range of shell thicknesses x and for
two values of n. For all cases the Cosserat solution converges smoothly to the exact solution as the shell
becomes thin. Moreover, it is seen that the Cosserat theory predicts accurate results for moderately thick
shells and moderately strong variation of the temperature field through the shell’s thickness.

9. Equations for a spherical shell with constant thickness

For a spherical shell of mean radius R and constant thickness /H, the normalized thickness x is defined by

H
and a material point on the spherical middle surface of the shell is located by the position vector x
X = Re,(y, ¢), (9.2

where the orthonormal base vectors {e,, e,, e} associated with the spherical polar coordinates {r, 7, ¢} are
defined in terms of the fixed base vectors e; of a rectangular Cartesian coordinate system by the equations
e, = e.(7,¢) = siny(cos ¢e; + sin ¢e,) + cos yes,
e, =e,(7,¢) = cosy(cos ¢e; + sin ¢pe,) — sin ye;, (9.3)
e, = e,(¢p) = —sin ¢e; + cos de;.

Again, the symbol ¢ is used instead of the usual symbol 0 for the circumferential coordinate to avoid
confusion with the temperature fields introduced earlier. Also, it can be shown that
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Oe, Oe, . e, Oe, 0 0 .
¢ ¢ i = COs ey, Lo g, Lo _ sin ye, — cos ye,. (9.4)

o e M T ")

Now, using the definitions in Section 3, the geometry of the spherical shell is given by

0'=y, 0°=¢, a =Re, a,=Rsinye;, a;=e, a'/>=R’siny,
al—le . ey, a3 —e, a3, =sinye
_R v _RSin'}) (03] 31 — €y, 32 — V€,
2 . . . 9.5
a% @y, =, @ X @p-ay=siny, (@'?a"a,) , = —2sinye,, ©:3)
2-x\’ 2+k\’
=R sin =R =—— ) siny.
o5 ) s a2
Also, the function G in (4.16) is given by
2
G=~R s1ny[1+12] (9.6)

which remains positive except for the singular points when siny = 0. Consequently, the second law of
thermodynamics is satisfied by these constitutive equations for all spherical shells. Moreover, the consti-
tutive equations (3.12) for p* and p** and (4.11) for p* yield

i sin {@-ﬁ-co o0 +—1 @]
P 0 0 oy " sin?y 9¢* ]’
kH? 0205 o0 1 %0
2 —1200 smy{ay2 +Coy6y+sin2y 6¢2 ) (9.7)

kH K2
3_ 2
p = [HOR <1 12>smy}03,

so that the heat fluxes g and ¢ in (3.20) can be expressed in the forms

‘——E 2 2 14—K2 H0+ 70 cotw@+—1 @
1= "g\2-% 12 } 62 /a“/ sin®y 0¢”

0?0, 005 1 %05
o]

0y? 0y  sin’y ¢’
(9.8)
A_kzzlzg %0 30 1 9%
q“ﬁ(m) K +12)H3 {az“o“”a—ﬁsm—zya?}
{2
0y sin’y 9¢? J |

In these equations the temperature fields {6, 6;} are defined by (3.21) in terms of the temperatures {0, 0}
at the bottom and top surfaces of the shell, respectively.
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For this spherical shell x; = x, = k, Lukasiewicz’s (1989) equations (5.3) become

k 2 2 (9% 00 1 2%
q:——[—K—(H—HO)—&-%{——FcotV——i- }+H93

H| 2 0y? 0y sin’y 0¢”
_K:Z_H{%_Fco‘[w@ 1 6263}:|
0132 T Ty a¢ 9.9)
k 020 1 8% '
g=—— 0—0 + +HH
q H |: ( 0) { a 2 6'}) S n y a¢ } 3
_ﬂ{%+cot1663 1 6263 }:|
10 | 0y? / Oy sin’y 0¢°
and Hashin’s (2001) equations (5.8) become
_ ko~
q = _E(O - 9)7
(9.10)

p=—E (23 oy - (2 )20 o, 0 L 20
= "H |\ 2"« 2k 0y? yav sin?y 0¢” | |’
where the temperature fields are given by (3.21).
In Section 3 the Cosserat equations were modified to ensure that they reproduce the exact solution for
a constant heat flux in any direction for arbitrary shell geometry. Therefore, to explore the differences

between these three models it is possible to consider the simple steady-state solution of constant heat flux f
for which the exact temperature field 6" is specified by

0*:90+BX3:00+ﬁVCOS“/. (911)
It then follows from (3.21) and (9.11) that

Hp (22— - Hp (2
0 =0, + ﬁ(%)cosw/, 6:90+—[3(¥>cosy,

H * (9.12)
0 =0, +7ﬁ cosy, HO;=Hpcosy.
Next, substituting these expressions into the Cosserat equations (9.8) yield
qg=q=—kfcosvy, (9.13)
which is consistent with the exact solution. In contrast, Lukasiewicz’s (1989) equations (9.9) yield
3 2 3 2
g=— [l—g—l—K }kﬁcos,;, 2,:—[1+ 2K+K }kﬂcosy (9.14.a,b)
and Hashin’s (2001) equations (9.10) yield
2 -3k
= —kficosy, g=—k T fcosy, (9.15a,b)

neither of which predict the exact solution (9.13). Moreover, a series expansion of these solutions indicates
that the solutions (9.14a,b) or (9.15b) are only accurate to zero-order in k. This means that the solutions
(9.14) and (9.15) do not predict the correct slope in the thin shell limit (x — 0).
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10. Example of a spherical shell

As a specific example consider the problem of a spherical shell which has inner radius @ and outer radius
b. Then, the mean radius R and uniform thickness H satisfy the equations

_ath oy . K:%, aR(Z_K), bR(2+K). (10.1)

R 2 2 2

Now, for steady-state the exact temperature field " satisfies the equation

0 2o 190 e 1 o0
ot r or 12 Oy? 20y p2sin’y o¢°

0. (10.2)

Therefore, following Carslaw and Jaeger (1959, p. 248) it can be shown using the change of variables

U = COS Y, (10.3)
that

o0 00" 0 00"

- = (=)= . 10.4

0y? ooty Oy  Ou {( K @u] (104)

Moreover, recalling that the Legendre functions P,(u) satisfy the differential equation

d N A D
dﬂ[(l_u)d#] = —n(n+1)P, (10.5)

for positive integer values of » it follows that a class of exact solutions of (10.2) can be written in the
forms

,
k my— R my+1

¢ = QR 00 = gxlma()" "~ ms(T) ] (10.6)

" —1++/1+4n(n+1) " 1+ +/1+4n(n+1)

1= P ) 2 = P )

where the constants 4 and B are determined by boundary conditions. Also, ¢* represents the radial
component of the heat flux vector. For the problem under consideration the boundary conditions are
specified

0'(a) =0, O(b)=p, (10.7)

where f§ controls the magnitude of the temperature at the outer surface. It then follows that the exact
solution of this problem is obtained by solving the equations

2 —k\™ 2 \™ 2+Kk\™ 2 \™
) a2 o () () w03
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to obtain

e ()" 5 B ()" 5 (10.9)

Consequently, the normal components g and ¢ of the heat fluxes at the inner and outer boundaries,
respectively, take the forms

G=0P.(n), q=0P(p), (10.10)

where the constants Q and @ are given by

- k R mp—1 ) my+1
=_—_ A — myB
0-—prmi(557) me(a5) )

k 2+ my—1 ) my+1 (1011)
~ K >
0 Aelma(H5)" a2
For the Cosserat shell model the temperature fields in (3.21) are specified by
0 = 0, +§Pn(u), 0y = an(u), 0=00, 0=0,+pP(n), (10.12)
so that Egs. (9.8) yield heat fluxes in the forms (10.10) with
— k 2\’ K’
Q__E(2—K> [1+E{1—2n(n+1)}]ﬁ, (10.13a)
LY G N LT WA (10.13b)
T T H\2+1« 12 i ' '
Similarly, Lukasiewicz’s (1989) equations (9.9) yield heat fluxes in the forms (10.10) with
@——5 I—K—2{5+3( +1)}B (10.14a)
=7 20 n(n , .
@——5 1+K—2{5+7( +1)}|p (10.14b)
=-7 20 n(n , .
and Hashin’s (2001) equations (9.10) yield heat fluxes in the forms (10.10) withs
_ k ~ k[2->5K
Q:_ﬁﬂa Q:_H[Z—K]ﬁ’ (10.15a,b)

A series expansion of these solutions indicates that the Cosserat solutions (10.13a,b) are both accurate to
first-order in k for any value of n and they are accurate to second-order in x for large values of n. In
contrast, the other solutions (10.14a,b) and (10.15a,b) are only accurate to zero-order in x. This means that
the solutions (10.14) and (10.15) do not predict the correct slope in the thin shell limit (x — 0). Fig. 2
compares the predictions of these solutions for a range of shell thicknesses k and for two values of n. For all
cases the Cosserat solution converges smoothly to the exact solution as the shell becomes thin. Again, it is
seen that the Cosserat theory predicts accurate results for moderately thick shells and moderately strong



7030 M. B. Rubin | International Journal of Solids and Structures 41 (2004) 7009-7033

0.8 : b 0.7
-1.04 -0.8
2 12 < 09/
2 -1.41 = Y.
S 16 1 <G Lo
----- L ] ..
184 ULl H @n=1 t 11 (b)yn=1  "~~_
2.0 ‘ ‘ ‘ ‘ -1.2 ‘ ‘ ‘ —
00 01 02 03 04 05 00 01 02 03 04 05
K K
-0.6 ‘ ‘ 0.5
-0.71 S
= = -1.01
=< -0.84 =
= >‘-1.5*
.@-0.9— <§
-1.04 -2.04
1.1 ; ; : 25 ; ; :
000 005 010 0.5 0.20 0.00 005 010 0.5 0.20
K K

Fig. 2. Response of a spherical shell. Comparison of the exact (E), Cosserat (C), Lukasiewicz (L) and Hashin (H) solutions.

variation of the temperature field through the shell’s thickness. Also, it is noted that the Legendre functions
for n =1 and n = 10 are given by

B 63 3465 , 15015 , 45045 , 109395 . 46189
Py =1 Pop) = =5+ 550 = —og W+ g = 55 Kt 356 10

(10.16)

11. Summary

The main idea of this paper is to point out that linear theories for rigid heat conducting shells which
introduce expressions for the average temperature (60", ¢) and average temperature gradient 0;(0”,¢) should
be capable of reproducing exact solutions for all constant three-dimensional temperature gradients g*.
Specifically, it was shown in Section 4 that, within the context of the direct approach to Cosserat shell
theory, the constitutive equations for the entropy fluxes {p*,p*, p**} should satisfy the restrictions (4.8)
whenever the temperature gradient g* is constant and the temperature fields are given by (4.5). In addition,
these constitutive equations must satisfy the second law of thermodynamics (3.11) which requires heat to
flow from hot to cold regions.

The Bubnov-Galerkin forms for {p* p**} can be obtained analytically for general shells but they are
quite complicated. In contrast, the expressions (3.12) and (A.10a,b) for {p*, p**}, which are motivated by
the Bubnov—Galerkin forms for a plate, are used for general shells. The restriction (4.8a) is satisfied by the
constitutive equation (3.12) for {p*}, but the restriction (4.8b) is not satisfied when {p**} is given by (3.12)
and {p*} is given by the Bubnov-Galerkin form (3.14). Moreover, since {p*, p**} are two linear functions of
three variables {0,,0;,0;,} and the shell’s geometry, it is clear that the single restriction (4.8b) is not
sufficient to uniquely determine these constitutive equations. The development in Section 4 uses the
Bubnov-Galerkin form (3.12) for {p**} and writes (4.8b) in the alternative form (4.10). Then, a new
constitutive form (4.11), with the specifications (4.13), is proposed for {p*} to satisfy the restriction (4.10)
and the second law of thermodynamics.

The resulting set of linear constitutive equations ensures that the Cosserat theory admits exact solutions
for all constant temperature gradients g* and all shell geometries, including shells with variable thicknesses.
Furthermore, the example problems discussed in Sections 8 and 10 demonstrate that the resulting Cosserat
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theory is reasonably accurate for moderately thick shells and moderately strong variation of the temper-
ature field through the shell’s thickness.
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Appendix A. Three-dimensional approach

Multiplying the balance of entropy (2.13a) by a weighting function w and integrating the result over the
thickness of the shell leads to

HJ2 H/2 1
/ wm*n* do’ = / [wm™s™ +wm*E + wy;p*3] de® — (wp*3 — Ewp*“Hx)

H)2 H)2

03=H/2

H/2
] - [ / (wp*“)d03‘| . (A1)
0P=-H/2 —H/2 ”

Also, integrating the energy equation (2.13b) over the thickness yields

H/2 HJ2 1
/ m*e*do’ :/ m*0"s* do® — <Q*p*3 ——Hﬁ)"p”)
—H/2 —H/2 2 0P=H/2

] - [ / H/Z(H*p*“)d03] . (A.2)
P=-H/2 —H/2 ”

Then, taking w = 1 and w = @° and introducing the definitions

HJ2 H/2 H/2
m:/ m*do’, mn:/ my*do?, mn3:/ Om*n* d6°,

1
— <Wp*3 +§WPHH1>

1
. (6*p*3 + 2]_]@9*])*1)

H/2 H/2 H/2
H/2
ms = m(s, +5,), ms;= / m*s*do°,
—H/2

Ak 1 AxG —% 1 —%0
msp—Kp3—§Hap >—( TS Hop )]

H)2
ms® = m(s? +S;), ms’ = / O’m*s*do,
—H/2 (A3)

H 1 1
3 _ _ - ~%3 T AXG —x3 _H —%0
ms, 3 Kp 2H,ap )+(p +5Hap )]

H/2 H/2
mf:/ m & de’, m53:/ Cm* & do’,

H/2 H/2
) HJ2 ) HJ2 H/2
pl —_ / p*zdg37 p3az — / 93p*u d63, me — / me* d03,
—H/2 ~H/2 —-H/2

, , H ; ; H
A — ptl 91 — ¢ L 09( — ¢
P =pr < T >7 p =pr ( 1 ),

yields the balances of entropy (3.5) and the balance of energy (3.6).
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Next, using the kinematic expression (3.1) with the definitions (3.2) it follows that

3
g =a,+0a;, g =as,

g*l/2g*1 _ al/Zal + 93(3372 % 33);

A4
g*1/2g*2 _ a1/232 + 93(33 % a3ﬁ1); ( )
gi=a, g'’= [al/z +0’a'?(a” - a3,) + (93)2(3371 X a3y - 33)]~

Thus, for constant three-dimensional mass density p* the quantity m in (A.3) is given by
H2
m= p*H |:a1/2 +E(a3‘1 X azyp - 33):| . (AS)

Moreover, using the kinematic assumption (3.1) it follows that the unit outward normal vectors, n* on the
bottom surface and n* on the top surface become

ok H HI H HZ
on = —\| a 773311 7733 X | a 733372 7733

——% — % —% HU — % —%0
o = —[g Vgt e }
(A.6)
on’* a —|—Ha +Hla X [ a +Ha —&—H'za
04 = — —_— — —=
1S e 2T A T A
A Ak A~k Nk Hq(f Ak A¥O
& =g1/2g3—7g1/2g ,
where
H H
g*1/2g*1 — 423! _5(3312 X a3), gu/zg*z — 4292 _5(213 X a31),
—% o* [ H 4 H2 ]
g 1/2g3 — al/z_jal/z(a '33‘a>+7(33,1 X a3’2.a3) as,
L o H (A7)
g1 =dal D (an xm), 1087 = a4 T (@ x ),

Akl /2 nx [ H 7 § ]
g I/Zg 3 a1/2 + Eal/Z(a . 3370) + 7(33’1 X 33’2 . 33) as.

Furthermore, using the relationship (2.15) for p* in terms of q* it can be seen that the external rates of
supply of entropy {ms,, ms;} are given by (3.17).
Next, with the help of (2.11a), (2.12), (2.15), (3.4) and (A.4) it follows that:

%0, k 1 * *0 % *
P =% g‘7(g Vg g gl (05 + 0°0:)), (A.8a)

k
P = i [0 + 0% (a" - a3,,) + (0°) (a3 x 23, - 23)] 03, (A.8b)
Then, the constitutive equations for {p', p**} associated with the Bubnov-Galerkin procedure are obtained
by evaluating the integrals in (A.3) using the approximate expressions (A.8). The resulting expressions for
{p*,p**} can be obtained analytically for a general shell but they are quite complicated. In contrast, the
expression for p* remains relatively simple and is given by (3.14).
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For the case of a flat plate the unit normal a; is independent of 0” so that with the help of (3.1) and (3.2)
the kinematic quantities (2.10) reduce to

*33

g =a, g¥=a g¥=0, g¥=1 g'=d" (A.9)

Then, the Bubnov—Galerkin forms of the constitutive equations for a plate become

o kH N o " kH
P = —O—Oal/za /’0,5, P = —Tooal/za ﬂew, P = —0—0a1/293. (A.10a,b,c)
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